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1. INTRODUCTION

In re
ent years there has been an in
reasing trend towards the in
orporation of


omputers into a wide variety of devi
es, su
h as palm-tops, telephones, embedded


ontrollers, et
. In many of these devi
es, the amount of memory available is

limited due to 
onsiderations su
h as spa
e, weight, power 
onsumption, or pri
e.

At the same time, there is an in
reasing desire to use more and more sophisti
ated

software in su
h devi
es, su
h as en
ryption software in telephones, or spee
h or

image pro
essing software in laptops and palm-tops. Unfortunately, an appli
ation

that requires more memory than is available on a parti
ular devi
e will not be

able to run on that devi
e. This makes it desirable to try to redu
e the size of

appli
ations where possible. This arti
le explores the use of 
ompiler te
hniques to

a

omplish this 
ode 
ompa
tion.

Previous work in redu
ing program size has explored the 
ompressiblity of a wide

range of program representations: sour
e languages, intermediate representations,

ma
hine 
odes, et
. [van de Wiel 2000℄. The resulting 
ompressed form either

must be de
ompressed (and perhaps 
ompiled) before exe
ution [Ernst et al. 1997;

Franz 1997; Franz and Kistler 1997℄, or it 
an be exe
uted (or interpreted [Fraser

and Proebsting 1995; Proebsting 1995℄) without de
ompression [Cooper and M
In-

tosh 1999; Fraser et al. 1984℄. The �rst method results in a smaller 
ompressed

representation than the se
ond, but requires the overhead of de
ompression before

exe
ution. De
ompression time may be negligible and, in fa
t, may be 
ompensated

for by the savings in transmission or retrieval time [Franz and Kistler 1997℄. A more

severe problem is the spa
e required to pla
e the de
ompressed 
ode. This also has

been somewhat mitigated by te
hniques of partial de
ompression or de
ompression-

on-the-
y [Bene�s et al. 1998; Ernst et al. 1997℄, but these te
hniques require altering

the run-time operation or the hardware of the 
omputer. In this arti
le, we explore

\
ompa
tion," i.e., 
ompression to an exe
utable form. The resulting form is larger

than the smallest 
ompressed representation of the program, but we do not pay

any de
ompression overhead or require more spa
e in order to exe
ute.

Mu
h of the earlier work on 
ode 
ompa
tion to yield smaller exe
utables treated

an exe
utable program as a simple linear sequen
e of instru
tions, and used pro-


edural abstra
tion to eliminated repeated 
ode fragments. Early work by Fraser

et al. [1984℄ used a suÆx tree 
onstru
tion to identify repeated sequen
es within a

sequen
e of assembly instru
tions, whi
h were then abstra
ted out into fun
tions.

Applied to a range of Unix utilities on a Vax pro
essor, this te
hnique managed

to redu
e 
ode size by about 7% on the average. A short
oming of this approa
h

is that sin
e it relies on a purely textual interpretation of a program, it is sensi-

tive to super�
ial di�eren
es between 
ode fragments, e.g., due to di�eren
es in

register names, that may not a
tually have any e�e
t on the behavior of the 
ode.

This short
oming was addressed by Baker [1993℄ using parameterized suÆx trees,

by Cooper and M
Intosh [1999℄ using register renaming (Baker and Manber [1998℄

dis
uss a similar approa
h), and by Zastre [1993℄ using parameterized pro
edural

abstra
tions. The main idea is to rewrite instru
tions so that instead of using

hard-
oded register names, the (register) operands of an instru
tion are expressed,

if possible, in terms of a previous referen
e (within the same basi
 blo
k) to that

register. Further, bran
h instru
tions are rewritten, where possible, in PC-relative
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form. These transformations allow the suÆx tree 
onstru
tion to dete
t the rep-

etition of similar but not lexi
ally identi
al instru
tion sequen
es. Cooper and

M
Intosh obtain a 
ode size redu
tion of about 5% on the average using these

te
hniques on 
lassi
ally optimized 
ode (in their implementation, 
lassi
al opti-

mizations a
hieve a 
ode size redu
tion of about 18% 
ompared to unoptimized


ode). These approa
hes nevertheless su�er from two weaknesses. The �rst is that

by fo
using solely on eliminating repeated instru
tion sequen
es, they ignore other,

potentially more pro�table, sour
es of 
ode size redu
tion. The se
ond is that any

approa
h that treats a program as a simple linear sequen
e of instru
tions, as in

the suÆx-tree-based approa
hes mentioned above, will su�er from the disadvan-

tage of having to work with a parti
ular ordering of instru
tions. The problem is

that two \equivalent" 
omputations may map to di�erent instru
tion sequen
es in

di�erent parts of a program, due to di�eren
es in register usage and bran
h la-

bels, instru
tion s
heduling, and pro�le-dire
ted 
ode layout to improve instru
tion


a
he utilization [Pettis and Hansen 1990℄.

This arti
le des
ribes a somewhat di�erent approa
h to 
ode 
ompa
tion, based

on a \whole-system" approa
h to the problem. Its main 
ontribution is to show

that by using aggressive interpro
edural optimization together with pro
edural ab-

stra
tion of repeated 
ode fragments, it is possible to obtain signi�
antly greater

redu
tions in 
ode size than have been a
hieved to date. For the identi�
ation and

abstra
tion of repeated 
ode fragments, moreover, it shows how \equivalent" 
ode

fragments 
an be dete
ted and fa
tored out without having to resort to purely lin-

ear treatments of 
ode sequen
es as in suÆx-tree-based approa
hes. Thus, instead

of treating a program as a simple linear sequen
e of instru
tions, we work with its

(interpro
edural) 
ontrol 
ow graph. Instead of using a suÆx tree 
onstru
tion to

identify repeated instru
tion sequen
es, we use a �ngerprinting s
heme to identify

\similar" basi
 blo
ks. This sets up a framework for 
ode 
ompa
tion that 
an be

more 
exible in its treatment of what 
ode fragments are 
onsidered \equivalent."

We use the notions of dominators and postdominators to dete
t identi
al subgraphs

of the 
ontrol 
ow graph, larger than a single basi
 blo
k, that 
an be abstra
ted out

into a pro
edure. Finally, we identify and take advantage of ar
hite
ture-spe
i�



ode idioms, e.g., for saving and restoring spe
i�
 sets of registers at the entry to and

return from fun
tions. Among the bene�ts of su
h an approa
h is that it simpli�es

the development of 
ode 
ompa
tion systems by using information already available

in most 
ompilers, su
h as the 
ontrol 
ow graph and dominator/postdominator

trees, thereby making it unne
essary to resort to extraneous stru
tures su
h as

suÆx trees.

Our ideas have been implemented in the form of a binary-rewriting tool based

on alto, a post-link-time 
ode optimizer [Muth et al. 1998℄. The resulting sys-

tem, 
alled squeeze, is able to a
hieve signi�
antly better 
ompa
tion than previous

approa
hes, redu
ing the size of 
lassi
ally optimized 
ode by about 30%. Our

ideas 
an be in
orporated fairly easily into 
ompilers 
apable of interpro
edural


ode transformations. The 
ode size redu
tions we a
hieve 
ome from two sour
es:

aggressive interpro
edural appli
ation of 
lassi
al 
ompiler analyses and optimiza-

tions; and 
ode fa
toring, whi
h refers to a variety of te
hniques to identify and

\fa
tor out" repeated instru
tion sequen
es. Se
tion 2 dis
usses those 
lassi
al op-

timizations, and their supporting analyses, that are useful for redu
ing 
ode size.
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This is followed, in Se
tion 3, by a dis
ussion of the 
ode fa
toring te
hniques used

within squeeze. In Se
tion 4, we dis
uss intera
tions between 
lassi
al optimizations

and fa
toring transformations. Se
tion 5 
ontains our experimental results.

A prototype of our system is available at www.
s.arizona.edu/alto/squeeze.

2. CLASSICAL ANALYSES AND OPTIMIZATIONS FOR CODE COMPACTION

In the 
ontext of 
ode 
ompa
tion via binary rewriting, it makes little sense to

allow the 
ompiler to in
ate the size of the program, via transformations su
h

as pro
edure inlining or loop unrolling, or to keep obviously unne
essary 
ode by

failing to perform, for example, 
ommon-subexpression elimination and register

allo
ation. We assume therefore that before 
ode 
ompa
tion is 
arried out at

link time, the 
ompiler has already been invoked with the appropriate options to

generate reasonably 
ompa
t 
ode. Nevertheless, many opportunities exist for link-

time 
ode transformations to redu
e program size. This se
tion dis
usses 
lassi
al

program analyses and optimizations that are most useful for 
ode size redu
tion.

In general, the optimizations implemented within squeeze have been engineered so

as to avoid in
reases in 
ode size. For example, pro
edure inlining is limited to

those pro
edures that have a single 
all site, and no alignment no-ops are inserted

during instru
tion s
heduling and instru
tion 
a
he optimization.

2.1 Optimizations for Code Compa
tion

Classi
al optimizations that are e�e
tive in redu
ing 
ode size in
lude the elimina-

tion of redundant, unrea
hable, and dead 
ode, as well as 
ertain kinds of strength

redu
tion.

2.1.1 Redundant-Code Elimination. A 
omputation in a program is redundant

at a program point if it has been 
omputed previously and its result is guaranteed

to be available at that point. If su
h 
omputations 
an be identi�ed, they 
an

obviously be eliminated without a�e
ting the behavior of the program.

A large portion of 
ode size redu
tions at link time in squeeze 
omes from the

appli
ation of this optimization to 
omputations of a hardware register 
alled the

global pointer (gp) register whi
h points to a 
olle
tion of 64-bit 
onstants 
alled a

global address table. The Alpha pro
essor, on whi
h squeeze is implemented, is a 64-

bit ar
hite
ture with 32-bit instru
tions. When a 64-bit 
onstant must be loaded

into a register, the appropriate global address table is a

essed via the gp regis-

ter, together with a 16-bit displa
ement.

1

A

essing a global obje
t, i.e., loading

from or storing to a global variable, or jumping to a pro
edure, therefore involves

two steps: loading the address of the obje
t from the global address table, and

then a

essing the obje
t via the loaded address. Ea
h pro
edure in an exe
utable

program has an asso
iated global address table, though di�erent pro
edures may

share the same table. Sin
e di�erent pro
edures|whi
h are generally 
ompiled

1

On a typi
al 32-bit ar
hite
ture, with 32-bit instru
tion words and 32-bit registers, a (32-bit)


onstant is loaded into a register via two instru
tions, one to load the high 16 bits of the register

and one for the low 16 bits; in ea
h of these instru
tions, the 16 bits to be loaded are en
oded as

part of the instru
tion word. However, sin
e the Alpha has 32-bit instru
tions but 64-bit registers,

this me
hanism is not adequate for loading a 64-bit 
onstant (e.g., the address of a pro
edure or

a global variable) into a register.
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independently|may need di�erent global pointer values, the value of the gp regis-

ter is 
omputed whenever a fun
tion is entered, as well as whenever 
ontrol returns

after a 
all to another fun
tion. At link time, it is possible to determine whether a

set of fun
tions has the same gp value, and therefore whether the re
omputation of

gp is ne
essary. It turns out that most fun
tions in a program are able to use the

same value of gp, making the re
omputation of gp redundant in most 
ases. Ea
h

su
h 
omputation of gp involves just one or two register operations, with no sig-

ni�
ant laten
y. On a supers
alar pro
essor su
h as the Alpha, the 
orresponding

instru
tions 
an generally be issued simultaneously with those for other 
omputa-

tions, and hen
e do not in
ur a signi�
ant performan
e penalty. Be
ause of this,

the elimination of gp 
omputations generally does not lead to any signi�
ant im-

provements in speed. However, be
ause there are so many re
omputations of gp

in a program, the elimination of redundant gp 
omputations 
an yield signi�
ant

redu
tions in size.

2.1.2 Unrea
hable-Code Elimination. A 
ode fragment is unrea
hable if there is

no 
ontrol 
ow path to it from the rest of the program. Code that is unrea
hable 
an

never be exe
uted, and 
an therefore be eliminated without a�e
ting the behavior

of the program.

At link time, unrea
hable 
ode arises primarily from the propagation of infor-

mation a
ross pro
edure boundaries. In parti
ular, the propagation of the values

of a
tual parameters in a fun
tion 
all into the body of the 
alled fun
tion 
an

make it possible to stati
ally resolve the out
omes of 
onditional bran
hes in the


allee. Thus, if we �nd, as a result of interpro
edural 
onstant propagation, that

a 
onditional bran
h within a fun
tion will always be taken, and there is no other


ontrol 
ow path to the 
ode in the bran
h that is not taken, then the latter 
ode

be
omes unrea
hable and 
an be eliminated.

Unrea
hable 
ode analysis involves a straightforward depth-�rst traversal of the


ontrol 
ow graph, and is performed as soon as the 
ontrol 
ow graph of the program

has been 
omputed. Initially, all basi
 blo
ks are marked as unrea
hable, ex
ept

for the entry blo
k for the whole program, and a dummy blo
k 
alled B

unknown

,

whi
h has an edge to ea
h basi
 blo
k whose prede
essors are not all known (see

Se
tion 2.2.1). The analysis then traverses the interpro
edural 
ontrol 
ow graph

and identi�es rea
hable blo
ks: a basi
 blo
k is marked rea
hable if it 
an be rea
hed

from another blo
k that is rea
hable. Fun
tion 
alls and the 
orresponding return

blo
ks are handled in a 
ontext-sensitive manner: the basi
 blo
k that follows a

fun
tion 
all is marked rea
hable only if the 
orresponding 
all site is rea
hable.

2.1.3 Dead-Code Elimination. Dead 
ode refers to 
omputations whose results

are never used. The notion of \results not used" must be 
onsidered broadly. For

example, if it is possible for a 
omputation to generate ex
eptions or raise signals

whose handling 
an a�e
t the behavior of the rest of the program, then we 
annot


onsider that 
omputation to be dead. Code that is dead 
an be eliminated without

a�e
ting the behavior of the program.

Link-time opportunities for dead-
ode elimination arise primarily as a result of

unrea
hable-
ode elimination that transforms partially dead 
omputations (
om-

putations whose results are used along some exe
ution paths from a program point

but not others) into fully dead ones.
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2.1.4 Strength Redu
tion. Strength redu
tion refers to the repla
ement of a se-

quen
e of instru
tions by an equivalent but 
heaper (typi
ally, faster) sequen
e.

In general, the 
heaper instru
tion sequen
e may not be shorter than the origi-

nal sequen
e (e.g., multipli
ation or division operations where one of the operands

is a known 
onstant 
an be repla
ed by a 
heaper but longer sequen
e of bit-

manipulation operations su
h as shifts and adds). The bene�ts for 
ode 
ompa
tion


ome from situations where the repla
ement sequen
e happens to be shorter than

the original sequen
e.

In squeeze, 
ode size improvements from strength redu
tion 
ome primarily from

its appli
ation to fun
tion 
alls. Like many pro
essors, the Alpha has two di�erent

fun
tion 
all instru
tions: the bsr (\bran
h subroutine") instru
tion, whi
h uses

PC-relative addressing and is able to a

ess targets within a �xed displa
ement of

the 
urrent lo
ation; and the jsr (\jump subroutine") instru
tion, whi
h bran
hes

indire
tly through a register and 
an target any address. The 
ompiler typi
ally

pro
esses programs a fun
tion at a time and generates 
ode for fun
tion 
alls with-

out knowledge of how far away in memory the 
allee is. Be
ause of this, fun
tion


alls are translated to jsr instru
tions. This, in turn, requires that the 64-bit

address of the 
allee be loaded into a register prior to the jsr. As dis
ussed in

Se
tion 2.1.1, this is done by loading the address of the 
allee from a global address

table. The 
ode generated for a fun
tion 
all 
onsists therefore of a load instru
tion

followed by a jsr instru
tion. If this 
an be strength-redu
ed to a bsr instru
tion,

we obtain a savings in 
ode size as well as an improvement in exe
ution speed.

2.2 Program Analyses for Code Compa
tion

Three program analyses turn out to be of fundamental importan
e for the trans-

formations dis
ussed above, and are dis
ussed in this se
tion.

2.2.1 Control Flow Analysis. Control 
ow analysis is essential for all of the op-

timizations dis
ussed in Se
tion 2.1. It is ne
essary for redundant-
ode elimination,

sin
e, in order to identify a 
omputation as redundant at a program point, we have

to verify that it has been 
omputed along every exe
ution path up to that point.

It is ne
essary for unrea
hable-
ode elimination as well as dead-
ode elimination

be
ause the 
lassi�
ation of 
ode as unrea
hable or dead relies fundamentally on

knowing the 
ontrol 
ow behavior of the program. Finally, the strength redu
tion

transformation for fun
tion 
alls dis
ussed in Se
tion 2.1.4 relies on the knowledge

of the targets of su
h 
alls.

Traditional 
ompilers generally 
onstru
t 
ontrol 
ow graphs for individual fun
-

tions, based on some intermediate representation of the program, in a straightfor-

ward way [Aho et al. 1985℄. Things are somewhat more 
omplex at link time be
ause

ma
hine 
ode is harder to de
ompile. In squeeze, we 
onstru
t the interpro
edural


ontrol 
ow graph for a program as follows:

(1) The start address of the program appears at a �xed lo
ation within the header

of the �le (this lo
ation may be di�erent for di�erent �le formats). Using this as

a starting point, we use the \standard" algorithm [Aho et al. 1985℄ to identify

leaders and basi
 blo
ks, as well as fun
tion entry blo
ks. We use the relo
ation

information of the exe
utable to identify additional leaders, su
h as jump table

targets, whi
h might otherwise not be dete
ted, and we mark these basi
 blo
ks
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as relo
atable. At this stage, we make two assumptions: (1) that ea
h fun
tion

has a single entry blo
k and (2) that all of the basi
 blo
ks of a fun
tion are

laid out 
ontiguously. If the �rst assumption turns out to be in
orre
t, we

\repair" the 
ow graph at a later stage. If the se
ond assumption does not

hold, the 
onstru
ted 
ontrol 
ow graph may 
ontain (safe) impre
isions whi
h

may 
ause less e�e
tive (size) optimizations.

(2) We add edges to the 
ow graph. If the exa
t target of a 
ontrol transfer

instru
tion 
annot be resolved, we assume that the transfer is to a spe
ial blo
k

B

unknown

(in the 
ase of indire
t jumps) or fun
tion F

unknown

(in the 
ase of

indire
t fun
tion 
alls). We 
onservatively assume that B

unknown

and F

unknown

de�ne and use all registers, et
. Any basi
 blo
k whose start address is marked

as relo
atable may be the target of any unresolved indire
t jump. Thus, we

add an edge from B

unknown

to ea
h su
h blo
k. Any fun
tion whose entry point

is marked as relo
atable may be the target of any unresolved indire
t fun
tion


all. Thus, we add a 
all edge to it from F

unknown

. (This is safe, but overly


onservative. We dis
uss, below, how this 
an be improved.)

(3) We 
arry out interpro
edural 
onstant propagation on the resulting 
ontrol 
ow

graph, as des
ribed in Se
tion 2.2.2. We use the results to determine addresses

that are loaded into registers. This information is used, in turn, to resolve

the targets of indire
t jumps and fun
tion 
alls. If we 
an resolve su
h targets

unambiguously, we repla
e the edge to F

unknown

or B

unknown

by an edge to the

appropriate target.

(4) Thus far, we have assumed that a fun
tion 
all returns to its 
aller at the

instru
tion immediately after the 
all instru
tion. At the level of exe
utable


ode, this assumption 
an be violated in two ways.

2

The �rst involves es
ap-

ing bran
hes|ordinary (i.e., non-fun
tion-
all) jumps from one fun
tion into

another|that arise either due to tail 
all optimization, or be
ause of 
ode shar-

ing in hand-written assembly 
ode (su
h as is found in, for example, some nu-

meri
al libraries). The se
ond involves nonlo
al 
ontrol transfers via fun
tions

su
h as setjmp and longjmp. Both these 
ases are handled by the insertion

of additional 
ontrol 
ow edges, whi
h we 
all 
ompensation edges, into the


ontrol 
ow graph. In the former 
ase, es
aping bran
hes from a fun
tion f

to a fun
tion g result in a single 
ompensation edge from the exit node of g

to the exit node of f . In the latter 
ase, a fun
tion 
ontaining a setjmp has

an edge from F

unknown

to its exit node, while a fun
tion 
ontaining a longjmp

has a 
ompensation edge from its exit node to F

unknown

. The e�e
t of these


ompensation edges is to for
e the various data
ow analyses to approximate

safely the 
ontrol 
ow e�e
ts of these 
onstru
ts.

(5) Finally, squeeze attempts to resolve indire
t jumps through jump tables, whi
h

arise from 
ase or swit
h statements. The essential idea is to use 
onstant

propagation to identify the start address of the jump table, and the bounds

2

In some ar
hite
tures, the 
allee may expli
itly manipulate the return address under some 
ir-


umstan
es. For example, the SPARC 
alling 
onvention allows an extra word to follow a 
all

instru
tion. In su
h a 
ase, the 
allee in
rements the return address to skip over this word. (We

are grateful to an anonymous referee for pointing this out to us.) Su
h situations do not arise in

the Alpha ar
hite
ture, and are not handled by squeeze.
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he
k instru
tion(s) to determine the extent of the jump table. The edge from

the indire
t jump to B

unknown

is then repla
ed by a set of edges, one for ea
h

entry in the jump table. If all of the indire
t jumps within a fun
tion 
an be

resolved in this way, any remaining edges from B

unknown

to basi
 blo
ks within

that fun
tion are deleted.

Potentially, any pro
edure whose entry-point address is stored in a data se
tion


an have this (relo
atable) address used somewhere in the program as the target

of an indire
t fun
tion 
all. Be
ause of this, as mentioned in step (2) above, su
h

pro
edures must be assumed to be rea
hable via indire
t 
alls as long as the pro-

gram 
ontains any 
all whose target is unknown. While this is safe, it is overly


onservative. As dis
ussed in Se
tion 2.1.4, the 
ode generated by the 
ompiler for

a fun
tion 
all typi
ally 
onsists of a load from a global address table followed by an

indire
t 
all. (A 
ompiler 
an, in prin
iple, optimize this to a dire
t 
all when the


aller and 
allee are within the same module, but su
h a s
heme is still ne
essary for

inter-module 
alls.) This means that any pro
edure that is a

essible from outside

its own module has its relo
atable address stored in the global address table (whi
h

is in a data se
tion) and hen
e will be 
onsidered to be 
alled from F

unknown

. As

an indi
ation of how 
onservative this simple te
hnique is, we note that for the

programs in the SPECint-95 ben
hmark suite, about 65% of all fun
tions, on the

average, are 
onsidered to be 
alled from F

unknown

.

Alpha exe
utables 
ontain fun
tion relo
ation information that we use to improve

the pre
ision of our 
ontrol 
ow analysis. The 
ompiler uses spe
ial relo
ation en-

tries, referred to as literal relo
ations, to tag every instru
tion that loads a fun
tion

address from a global address table, and every instru
tion that uses this loaded

address. (These relo
ation entries play a purely informational role, in that they


an be ignored by the linker without a�e
ting program behavior.) If every load of a

fun
tion's address is used simply to jump to that address, we remove the edge from

F

unknown

to the fun
tion, and repla
e it with 
all edges from the basi
 blo
ks that


ontain the jump instru
tions. If a load of a fun
tion address is not followed by a

jump, the address may be stored and, thus, may equal any unresolved target. In

this 
ase, we preserve the edge from F

unknown

to the fun
tion. For the SPECint-95

ben
hmarks, this results in fewer than 14% of the pro
edures having a 
all from

F

unknown

. The resulting improvement in 
ontrol 
ow information has a very sig-

ni�
ant e�e
t on the amount of 
ode that 
an be eliminated as unrea
hable, and

leads to a signi�
ant improvement in the amount of 
ode 
ompa
tion that 
an be

realized.

2.2.2 Interpro
edural Constant Propagation. As mentioned above, we as-

sume that standard 
ompiler analyses and optimizations|in
luding 
onstant

propagation|have already been 
arried out prior to link-time 
ode 
ompa
tion.

Where do opportunities for link-time 
onstant propagation then arise? It turns

out, not surprisingly, that 
onstant values that are propagated at 
ompile time are

those that are present in sour
e-level 
ompilation units, while those propagated at

link time are either values that are not available at 
ompile time, e.g., addresses of

global names, or those that the 
ompiler is unable to propagate a
ross 
ompilation

unit boundaries, e.g., from a 
aller to a 
allee. Link-time 
onstant propagation

opportunities also arise from ar
hite
ture-spe
i�
 
omputations that are not visible
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at the intermediate 
ode representation level typi
ally used by 
ompilers for most

optimizations. An example of this is the 
omputation of the gp register on the

Alpha pro
essor.

The analysis we use in squeeze is essentially standard iterative 
onstant prop-

agation, limited to registers but 
arried out a
ross the 
ontrol 
ow graph of the

entire program. This has the e�e
t of 
ommuni
ating information about 
onstant

arguments from a 
alling pro
edure to the 
allee. To improve pre
ision, squeeze at-

tempts to determine the registers saved on entry to a fun
tion and restored at the

exit from it. If a register r that is saved and restored by a fun
tion in this manner


ontains a 
onstant 
 just before the fun
tion is 
alled, r is inferred to 
ontain the

value 
 on return from the 
all.

Constant propagation turns out to be of fundamental importan
e for the rest of

the system, sin
e many 
ontrol and data 
ow analyses rely on the knowledge of


onstant addresses 
omputed in the program. For example, the 
ode generated by

the 
ompiler for a fun
tion 
all typi
ally �rst loads the address of the 
alled fun
tion

into a register, then uses a jsr instru
tion to jump indire
tly through that register.

If 
onstant propagation determines that the address being loaded is a �xed value

and the 
allee is not too far away, the indire
t fun
tion 
all 
an be repla
ed by a

dire
t 
all using a bsr instru
tion, as dis
ussed in Se
tion 2.1.4. This is not only


heaper, but also vital for improving the pre
ision of the interpro
edural 
ontrol


ow graph of the program, sin
e it lets us repla
e a pair of 
all/return edges to

F

unknown

with a pair of su
h edges to the (known) 
allee. Another example of the

use of 
onstant address information involves the identi�
ation of possible targets

of indire
t jumps through jump tables. Unless this 
an be done, we must assume

that the indire
t jump is 
apable of jumping to any basi
 blo
k of a fun
tion,

3

and this 
an signi�
antly hamper optimizations. Finally, knowledge of 
onstant

addresses is useful for optimizations su
h as the removal of unne
essary memory

referen
es. We �nd that on the average, link-time 
onstant propagation is able to

determine the values of the arguments and results for about 18% of the instru
tions

of a program. (This does not mean that these \evaluated" instru
tions 
an all be

removed, sin
e very often they represent address 
omputations for indexing into

arrays or stru
tures or for 
alling fun
tions.)

2.2.3 Interpro
edural Register Liveness Analysis. Code fa
toring, dis
ussed in

Se
tion 3, involves abstra
ting repeated instru
tion sequen
es into pro
edures. To


all su
h pro
edures it is ne
essary to �nd a register that 
an be used to hold the

return address. Squeeze implements a relatively straightforward interpro
edural

liveness analysis, restri
ted to registers, to determine whi
h registers are live at

any given program point. The analysis is 
ontext-sensitive in that it maintains

information about whi
h return edges 
orrespond to whi
h 
all sites, and propa-

gates information only along realizable 
all/return paths. The \standard" data
ow

equations for liveness analysis are extended to deal with idiosyn
ra
ies of the Alpha

instru
tion set. For example, the 
all pal instru
tion, whi
h a
ts as the interfa
e

with the host operating system, has to be handled spe
ially, sin
e the registers that

may be used by this instru
tion are not visible as expli
it operands of the instru
-

3

More pre
isely, any basi
 blo
k that is marked as \relo
atable," as dis
ussed in Se
tion 2.2.1.
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tion. Our implementation 
urrently uses the node B

unknown

as the target for su
h


alls. The 
onditional move instru
tion also requires spe
ial attention, sin
e the

destination register must also be 
onsidered as a sour
e register.

In order to propagate data
ow information only along realizable 
all/return

paths, squeeze 
omputes summary information for ea
h fun
tion, and models the

e�e
t of fun
tion 
alls using these summaries. Given the site of a 
all to a fun
tion

f , 
onsisting of a 
all node n




and a return node n

r

, the e�e
ts of the fun
tion 
all

on liveness information are summarized via two pie
es of information:

(1) mayUse[f ℄ is the set of registers that may be used by f . A register r may be

used by f if there is a realizable path from the entry node of f to a use of r

without an intervening de�nition of r. Hen
e mayUse [f ℄ des
ribes the set of

registers that are live at the entry to f independent of the 
alling 
ontext, and

whi
h are therefore ne
essarily live at the 
all node n




.

(2) byPass [f ℄ is the set of registers whose liveness depends on the 
alling 
ontext

for f . This 
onsists of those registers r su
h that, if r is live at n

r

, then r is

also live at n




.

The analysis pro
eeds in three phases. The �rst two phases 
ompute summary

information for fun
tions, i.e., their mayUse and byPass sets. The third phase then

uses this information to do the a
tual liveness 
omputation.

It turns out that even 
ontext-sensitive liveness analyses may be overly 
onser-

vative if they are not 
areful in handling register saves and restores at fun
tion 
all

boundaries. Consider a fun
tion that saves the 
ontents of a register, then restores

the register before returning. A register r that is saved in this manner will appear as

an operand of a store instru
tion, and therefore appear to be used by the fun
tion.

In the subsequent restore operation, register r will appear as the destination of a

load instru
tion, and therefore appear to be de�ned by the fun
tion. A straightfor-

ward analysis will infer that r is used by the fun
tion before it is de�ned, and this

will 
ause r to be inferred as live at every 
all site for f . To handle this problem,

squeeze attempts to determine, for ea
h fun
tion, the set of registers it saves and

restores.

4

If the set of 
allee-saved registers of fun
tion f 
an be determined, we 
an

use it to improve the pre
ision of the analysis by removing this set from mayUse [f ℄

and adding it to byPass[f ℄ whenever those values are updated during the �xpoint


omputation.

3. CODE FACTORING

Code fa
toring involves (1) �nding a multiply-o

urring sequen
e of instru
tions,

(2) making one representative sequen
e that 
an be used in pla
e of all o

urren
es,

and (3) arranging, for ea
h o

urren
e, that the program exe
utes the representative

instead of the o

urren
e. The third step 
an be a
hieved by expli
it 
ontrol transfer

(via a 
all or jump), or by moving the representative of several o

urren
es to a

point that dominates every o

urren
e. We �rst exploit the latter form of 
ode

fa
toring, sin
e it involves no added 
ontrol transfer instru
tions.

4

We do not assume that a program will ne
essarily respe
t the 
alling 
onventions with regard

to 
allee-saved registers, sin
e su
h 
onventions are not always respe
ted in libraries 
ontaining

hand-written assembly 
ode. This approa
h is safe, though sometimes overly 
onservative.
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B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)
stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

E

Fig. 1. Lo
al 
ode fa
toring.

3.1 Lo
al Fa
toring Transformations

Inspired by an idea of Knoop et al. [1994℄, we try to merge identi
al 
ode fragments

by moving them to a point that pre- or postdominates all the o

urren
es of the

fragments. We have implemented a lo
al variant of this s
heme whi
h we des
ribe

using the example depi
ted in Figure 1. The left hand side of the �gure shows an

assembly 
ode 
ow
hart with a 
onditional bran
h (beq r0) in blo
k A. Blo
ks B

and C 
ontain the same instru
tion add r5,r6,r8. Sin
e these instru
tions do not

have ba
kward dependen
ies with any other instru
tion in B or C, we 
an safely

move them into blo
k A just before the beq instru
tion, as shown in the right-hand

side of Figure 1. Similarly, blo
ks B, C, and D share the same store instru
tion

stq r9,r16(r23), and sin
e these instru
tions do not have forward dependen
ies

with any other instru
tion in B, C, and D, they 
an be safely moved into blo
k E.

In this 
ase, it is not possible to move the store instru
tion from B and C into A

be
ause, due to the la
k of aliasing information, there are ba
kward dependen
ies

to the load instru
tions (ldq) in B and C. In general, however, it might be possible

to move an instru
tion either up or down. In this 
ase, we prefer to move it down,

sin
e moving it up, over a two-way bran
h, will eliminate one 
opy while moving it

down to a blo
k that has many prede
essors might eliminate several 
opies.

Our s
heme uses register reallo
ation to make this transformation more e�e
tive.

For example, the sub instru
tions in B and C write to di�erent registers (r9 and

r19). We 
an, however, rename r9 to r19 in B, thereby making the instru
tions

identi
al. Another opportunity rests with the xor instru
tions in B and C. Even

though they are identi
al, we 
annot move them into A be
ause they write register

r0 whi
h is used by the 
onditional bran
h. Reallo
ating r0 in A to another register

whi
h is dead at the end of A will make the transformation possible.

3.2 Pro
edural Abstra
tion

Given a single-entry, single-exit 
ode fragment C, pro
edural abstra
tion of C in-

volves (1) 
reating a pro
edure f

C

whose body is a 
opy of C and (2) repla
ing

the appropriate o

urren
es of C in the program text by a fun
tion 
all to f

C

.

While the �rst step is not very diÆ
ult, the se
ond step, at the level of assembly
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or ma
hine 
ode, involves a little work.

In order to 
reate a fun
tion 
all using some form of \jump-and-link" instru
tion

that transfers 
ontrol to the 
allee and at the same time puts the return address into

a register, it is ne
essary to �nd a free register for that purpose. A simple method

is to 
al
ulate, for ea
h register r, the number of o

urren
es of 
ode fragment C

that 
ould use r as a return register. A register with the highest su
h �gure of

merit is 
hosen as the return register for f

C

. If a single instan
e of f

C

, using a

parti
ular return register, is not enough to abstra
t out all of the o

urren
es of C

in the program, we may 
reate multiple instan
es of f

C

that use di�erent return

registers. We use a more 
ompli
ated s
heme when abstra
ting fun
tion prologs

(see Se
tion 3.5.1) and regions of multiple basi
 blo
ks (see Se
tion 3.4).

3.3 Pro
edural Abstra
tion for Individual Basi
 Blo
ks

Central to our approa
h is the ability to apply pro
edural abstra
tion to individual

basi
 blo
ks. In this se
tion, we dis
uss how 
andidate basi
 blo
ks for pro
edural

abstra
tion are identi�ed.

3.3.1 Fingerprinting. To redu
e the 
ost of 
omparing basi
 blo
ks to determine

whether they are identi
al (or similar), we use a �ngerprint fun
tion to 
ompute a

�ngerprint for ea
h basi
 blo
k, su
h that two blo
ks with di�erent �ngerprints are

guaranteed to be di�erent. In general, su
h �ngerprint fun
tions are de�ned with

respe
t to the notion of \equality" between basi
 blo
ks. For example, in our 
urrent

implementation, two blo
ks are 
onsidered to be equal if the instru
tion sequen
es

in them are the same. Thus, the �ngerprint fun
tion of a blo
k is based on the

sequen
e of instru
tions in the blo
k. On the other hand, if a 
ode 
ompa
tion

s
heme de�nes equality of basi
 blo
ks with respe
t to de�nition-use 
hains then

a �ngerprint based on the number of o

urren
es of ea
h type of op
ode may be

used.

In our 
urrent implementation, a �ngerprint is a 64-bit value formed by 
on
ate-

nating 4-bit en
odings of the op
odes of the �rst 16 instru
tions in the blo
k. Sin
e

most \systems" appli
ations tend to have short basi
 blo
ks, 
hara
terizing the �rst

16 instru
tions seems enough for most basi
 blo
ks. This means that two blo
ks

that are di�erent, but whi
h have the same sequen
e of op
odes for their �rst 16

instru
tions, will have the same �ngerprint: we will dis
over them to be di�erent

later, when we a
tually 
ompare them instru
tion by instru
tion.

With 4 bits per instru
tion, we 
an en
ode 15 di�erent op
odes and reserve one


ode for \other." We de
ide whi
h 15 will be expli
itly represented by 
onsidering a

stati
 instru
tion 
ount of the program. The 15 most frequently o

urring op
odes

are given distin
t 4-bit patterns. The remaining pattern, 0000, represents op
odes

that are not in the top 15 in frequen
y.

To redu
e the number of pairwise 
omparisons of �ngerprints that must be 
arried

out, we use a hashing s
heme su
h that basi
 blo
ks in di�erent hash bu
kets are

guaranteed to have di�erent �ngerprints, and so need not be 
ompared.

3.3.2 Register Renaming within Basi
 Blo
ks. When we �nd two basi
 blo
ks

that are \similar," i.e., have the same �ngerprint and the same number of instru
-

tions, but whi
h are not identi
al, we attempt to rename the registers in one of

them so as to make the two identi
al. The basi
 idea is very simple: we rename
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r5 = r4+1
r3 = r5+r2
r6 = r5*r3

B1

r4 = r6*2
r0 = r3-r6

{r1,r2} live

{r3,r4} live

r0 = r1+1

r5 = r0*r1
r3 = r1-r5
r4 = r5*2

r1 = r0+r2

B0

r4 = r1

B1
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

B0
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

r3 = r0

(a) before (b) after

Fig. 2. Example of basi
-blo
k-level register renaming.

registers \lo
ally," i.e., within the basi
 blo
k; and if ne
essary, we insert register-

to-register moves, in new basi
 blo
ks inserted immediately before and after the

blo
k being renamed, so as to preserve program behavior. An example of this is

shown in Figure 2, where blo
k B0 is renamed to be the same as blo
k B1.

For soundness, we have to ensure that the renaming does not alter any use-

de�nition relationships. We do this by keeping tra
k of the set of registers that

are live at ea
h point in the basi
 blo
k, as well as the set of registers that have

already been subje
ted to renaming. These sets are then used to dete
t and dis-

allow renamings that 
ould alter the program's behavior. The pseudo
ode for our

renaming algorithm is given in Appendix A.

The renaming algorithm keeps tra
k of the number of expli
it register-to-register

moves that have to be inserted before and after a basi
 blo
k that is being renamed.

The renaming is undone if, at the end of the renaming pro
ess, the 
ost of renaming,

i.e., the number of register moves required together with a fun
tion 
all instru
tion,

ex
eeds the savings from the renaming, i.e., the number of instru
tions in the blo
k.

Cooper and M
Intosh [1999℄ des
ribe a di�erent approa
h to register renaming.

They 
arry out register renaming at the level of entire live ranges. That is, when

renaming a register r

0

to a di�erent register r

1

, the renaming is applied to an

entire live range for r

0

. This has the advantage of not requiring additional register

moves before and after a renamed blo
k, as our approa
h does. However, it has

the problem that register renaming to allow the abstra
tion of a parti
ular pair of

basi
 blo
ks may interfere with the abstra
tion of a di�erent pair of blo
ks. This

is illustrated in Figure 3, where solid double arrows indi
ate identi
al basi
 blo
ks,

while dashed double arrows indi
ate blo
ks that are not identi
al but whi
h 
an be

made identi
al via register renaming. Blo
ks B0, B1, and B2 
omprise a live range

for register r0, while B3 and B5 
omprise a live range for r1. We 
an rename r0

to r5 in this live range, so as to make blo
ks B1 and B3 identi
al, but this will


ause blo
ks B2 and B4 to not be identi
al and therefore not abstra
table into a

fun
tion. We 
an also rename r5 to r0 in blo
k B3 so as to make it identi
al to

B1, but this will interfere with the abstra
tion of blo
ks B5 and B6. Be
ause of

su
h interferen
e e�e
ts, it is not 
lear whether live-range-level renaming produ
es

results that are ne
essarily superior to basi
-blo
k-level renaming. Noti
e that the
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r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

r1 = r0+r1

r3 = r1+r2

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

B4

r1 = r5+r1

r3 = r1+r2

B3

B5

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B0

B1

B2

r0 = load(...)

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B6

r0        r5

r0        r5

Live range for

Live range for

r0

r1

Fig. 3. Interferen
e e�e
ts in live-range-level register renaming.

problem 
ould be addressed by judi
iously splitting the live ranges. Indeed, the

lo
al renaming we use 
an be seen as the limiting 
ase of live-range-level renaming

if splitting is applied until no live range spans more than one basi
 blo
k.

3.3.3 Control Flow Separation. The approa
h des
ribed above will typi
ally not

be able to abstra
t two basi
 blo
ks that are identi
al ex
ept for an expli
it 
ontrol

transfer instru
tion at the end. The reason for this is that if the 
ontrol transfers

are to di�erent targets, the blo
ks will be 
onsidered to be di�erent and so will not

be abstra
ted. Moreover, if the 
ontrol transfer instru
tion is a 
onditional bran
h,

pro
edural abstra
tion be
omes 
ompli
ated by the fa
t that two possible return

addresses have to be 
ommuni
ated.

To avoid su
h problems, basi
 blo
ks that end in an expli
it 
ontrol transfer

instru
tion are split into two blo
ks: one blo
k 
ontaining all the instru
tions in

the blo
k ex
ept for the 
ontrol transfer, and another blo
k that 
ontains only the


ontrol transfer instru
tion. The �rst of this pair of blo
ks 
an then be subje
ted

to renaming and/or pro
edural abstra
tion in the usual way.

The next se
tion des
ribes how 
ode fragments larger than a single basi
 blo
k


an be subje
ted to pro
edural abstra
tion.

3.4 Single-Entry/Single-Exit Regions

The dis
ussion thus far has fo
used on the pro
edural abstra
tion of individual

basi
 blo
ks. In general, however, we may be able to �nd multiple o

urren
es of

a 
ode fragment 
onsisting of more than one basi
 blo
k. In order to apply pro
e-

dural abstra
tion to su
h a region R, at every o

urren
e of R in the program, we

must be able to identify a single program point at whi
h 
ontrol enters R, and a

single program point at whi
h 
ontrol leaves R. It isn't hard to see that any set of

basi
 blo
ks R with a single entry point and a single exit point 
orresponds to a

pair of points (d; p) su
h that d dominates every blo
k in R and p postdominates

every blo
k in R. Conversely, a pair of program points (d; p), where d dominates p

and p postdominates d, uniquely identi�es a set of basi
 blo
ks with a single entry

point and single exit point. Two su
h single-entry, single-exit regions R and R

0

are


onsidered to be identi
al if it is possible to set up a 1-1 
orresponden
e ' between
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their members su
h that B

1

' B

0

1

if and only if (1) B

1

is identi
al to B

0

1

, and (2) if

B

2

is a (immediate) su

essor of B

1

under some 
ondition C, and B

0

2

is a (imme-

diate) su

essor of B

0

1

under the same 
ondition C, then B

2

' B

0

2

. The algorithm

to determine whether two regions are identi
al works by re
ursively traversing the

two regions, starting at the entry node, and verifying that 
orresponding blo
ks are

identi
al.

In squeeze, after we apply pro
edural abstra
tion to individual basi
 blo
ks, we

identify pairs of basi
 blo
ks (d; p) su
h that d dominates p and p postdominates

d. Ea
h su
h pair de�nes a single-entry, single-exit set of basi
 blo
ks. We then

partition these sets of basi
 blo
ks into groups of identi
al regions, whi
h then

be
ome 
andidates for further pro
edural abstra
tion.

As in the 
ase of basi
 blo
ks, we 
ompute a �ngerprint for ea
h region so that

regions with di�erent �ngerprints will ne
essarily be di�erent. These �ngerprints

are, again, 64-bit values. There are 8 bits for the number of basi
 blo
ks in the

region and 8 bits for the total number of instru
tions, with the bit pattern 11...1

being used to represent values larger than 256. The remaining 48 bits are used to

en
ode the �rst (a

ording to a parti
ular preorder traversal of the region) 8 basi


blo
ks in the region, with ea
h blo
k en
oded using 6 bits: two bits for the type

of the blo
k,

5

and four bits for the number of instru
tions in the blo
k. Again, as

in the 
ase of basi
 blo
ks, the number of pairwise 
omparisons of �ngerprints is

redu
ed by distributing the regions over a hash table.

It turns out that applying pro
edural abstra
tion to a set of basi
 blo
ks is

not as straightforward as for a single basi
 blo
k, espe
ially in a binary rewriting

implementation su
h as ours. The reason is that, in general, when the pro
edure


orresponding to su
h a single-entry, single-exit region is 
alled, the return address

will be put into a register whose value 
annot be guaranteed to be preserved through

that entire pro
edure, e.g., be
ause the region may 
ontain fun
tion 
alls, or be
ause

the region may 
ontain paths along whi
h that register is overwritten. This means

that the return address register has to be saved somewhere, e.g., on the sta
k.

However, allo
ating an extra word on the sta
k, to hold the return address, 
an


ause problems unless we are 
areful. Allo
ating this spa
e at the top of the sta
k

frame 
an 
ause 
hanges in the displa
ements of other variables in the sta
k frame,

relative to the top-of-sta
k pointer, while allo
ating it at the bottom of the sta
k

frame 
an 
hange the displa
ements of any arguments that have been passed on the

sta
k. If there is any address arithmeti
 involving the sta
k pointer, e.g., for address


omputations for lo
al arrays, su
h 
omputations may be a�e
ted by 
hanges in

displa
ements within the sta
k frame. These problems are somewhat easier to

handle if the pro
edural abstra
tion is being 
arried out before 
ode generation,

e.g., at the level of abstra
t syntax trees [Franz 1997℄. At the level of assembly


ode [Cooper and M
Intosh 1999; Fraser et al. 1984℄ or ma
hine 
ode (as in our

work), it be
omes 
onsiderably more 
ompli
ated. There are, however, some simple


ases where it is possible to avoid the 
ompli
ations asso
iated with having to save

and restore the return address when introdu
ing pro
edural abstra
tions. Here,

we identify two su
h situations. In both 
ases, let (d

0

; p

0

) and (d

1

; p

1

) de�ne two

5

In essen
e, the type of a blo
k des
ribes its 
ontrol 
ow behavior, i.e., whether it 
ontains a

pro
edure 
all, a 
onditional bran
h, an indire
t jump through a jump table, et
.
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return

d0

p
0

d

p
1

1

return

(a) before

return

d0

p
0

(b) after

Fig. 4. Merging regions ending in returns via 
ross-jumping.

identi
al regions.

The �rst 
ase involves situations where p

0

and p

1

are return blo
ks, i.e., blo
ks

from whi
h 
ontrol returns to the 
aller. In this 
ase there is no need to use

pro
edural abstra
tion to 
reate a separate fun
tion for the two regions. Instead,

we 
an use a transformation known as 
ross-jumping [Mu
hni
k 1997℄, where the


ode in the region (d

1

; p

1

) is simply repla
ed by a bran
h to d

0

. The transformation

is illustrated in Figure 4.

In the se
ond 
ase, suppose that it is possible to �nd a register r that (1) is not

live at entry to either region, and (2) whose value 
an be guaranteed to be preserved

up to the end of the regions (r may be a general-purpose register that is not de�ned

within either region, or a 
allee-saved register that is already saved and restored

by the fun
tions in whi
h the regions o

ur). In this 
ase, when abstra
ting these

regions into a pro
edure p, it is not ne
essary to add any 
ode to expli
itly save and

restore the return address for p. The instru
tion to 
all p 
an simply put the return

address in r, and the return instru
tion(s) within p 
an simply jump indire
tly

through r to return to the 
aller.

If neither of these 
onditions is satis�ed, squeeze tries to determine whether the

return address register 
an be safely saved on the sta
k at entry to p, and restored at

the end. For this, it uses a 
onservative analysis to determine whether a fun
tion

may have arguments passed on the sta
k, and whi
h, if any, registers may be

pointers into the sta
k frame. Given a set of 
andidate regions to be abstra
ted

into a representative pro
edure, it 
he
ks the following:

(1) for ea
h fun
tion that 
ontains a 
andidate region, it must be safe, with respe
t

to the problems mentioned above, to allo
ate a word on the sta
k frame of the

fun
tion;

(2) a register r

0

must be free at entry to ea
h of the regions under 
onsideration;

(3) a register r

1

must be free at the end of ea
h of the regions under 
onsideration;

and

(4) there should not be any 
alls to setjmp()-like fun
tions that 
an be a�e
ted

by a 
hange in the stru
ture of the sta
k frame.
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If these 
onditions are satis�ed then, on entry, p allo
ates an additional word on

the sta
k and saves the return address (passed via r

0

) into this lo
ation; and, on

exit, loads the return address from this lo
ation (using r

1

) and restores the sta
k

frame. The 
urrent implementation of the safety 
he
k des
ribed above is quite


onservative in its treatment of fun
tion 
alls within a region. In prin
iple, if we

�nd that spa
e 
an be allo
ated on the sta
k but have no free registers for the

return address at entry or exit from the abstra
ted fun
tion, it should be possible

to allo
ate an extra word on the sta
k in order to free up a register, but we have

not implemented this.

3.5 Ar
hite
ture-Spe
i�
 Idioms

Apart from the general-purpose te
hniques des
ribed earlier for dete
ting and ab-

stra
ting out repeated 
ode fragments, there are ma
hine-spe
i�
 idioms that 
an

be pro�tably exploited. In parti
ular, the instru
tions to save and restore registers

(the return address and 
allee-saved registers) in the prolog and epilog of ea
h fun
-

tion generally have a predi
table stru
ture and are saved at predi
table lo
ations

within the sta
k frame. For example, the standard 
alling 
onvention for the Com-

paq Alpha AXP ar
hite
ture under Tru64 Unix

6

treats register r26 as the return

address register (ra) and registers r9 through r15 as 
allee-saved registers. These

are saved at lo
ations 0x0(sp), 0x8(sp), 0x10(sp), and so on. Abstra
ting out

su
h instru
tions 
an yield 
onsiderable savings in 
ode size. Su
h ar
hite
ture-

spe
i�
 save/restore sequen
es are re
ognized and handled spe
ially by squeeze, for

two reasons: �rst, these instru
tions often do not form a 
ontiguous sequen
e in

the 
ode stream; and se
ond, handling them spe
ially allows us to abstra
t them

out of basi
 blo
ks that may not be identi
al to ea
h other.

3.5.1 Abstra
ting Register Saves. In order to abstra
t out the register save in-

stru
tions in the prolog of a fun
tion f into a separate fun
tion g, it is ne
essary to

identify a register that 
an be used to hold the return address for the 
all from f to

g. For ea
h register r, we �rst 
ompute the savings that would be obtained if r were

to be used for the return address for su
h 
alls. This is done by totaling up, for ea
h

fun
tion f where r is free at entry to f , the number of registers saved in f 's prolog.

We then 
hoose a register r with maximum savings (whi
h must ex
eed 0), and

generate a family of fun
tions Save

r

15

; : : : ;Save

r

9

;Save

r

ra

that save the 
allee-saved

registers and the return address register, and then return via register r. The idea

is that fun
tion Save

r

i

saves register i and then falls through to fun
tion Save

r

i�1

.

As an example, suppose we have two fun
tions f0() and f1(), su
h that f0()

saves registers r9, . . . , r14, and f1() saves only register r9. Assume that register

r0 is free at entry to both these fun
tions and is 
hosen as the return address

register. The 
ode resulting from the transformation des
ribed above is shown in

Figure 5.

It may turn out that the fun
tions subje
ted to this transformation do not use

all of the 
allee-saved registers. For example, in Figure 5, suppose that none of the

fun
tions using return address register r0 save register r15. In this 
ase, the 
ode

for the fun
tion Save

0

15

be
omes unrea
hable and is subsequently eliminated.

6

Tru64 Unix was formerly known as Digital Unix.
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Save0
15

Save0
14

Save0
9

Save0
ra

Save0
14

sp = sp - 32
bsr  r0, Save0

9

. . .

f0:

bsr  r0, 
sp = sp - 40

f1:

stq  r15, 0x38(sp)

stq r14, 0x30(sp)

stq  r9, 0x8(sp)

stq  ra, 0x0(sp)
ret  (r0)

Fig. 5. Example 
ode from abstra
tion of register save a
tions from fun
tion prologs.

A parti
ular 
hoi
e of return address register, as des
ribed above, may not a
-


ount for all of the fun
tions in a program. The pro
ess is therefore repeated,

using other 
hoi
es of return address registers, until either no further bene�t 
an

be obtained, or all fun
tions are a

ounted for.

3.5.2 Abstra
ting Register Restores. The 
ode for abstra
ting out register re-

store sequen
es in fun
tion epilogs is 
on
eptually analogous to that des
ribed

above, but with a few di�eren
es. If we were simply to do the opposite of what

was done for register saves in fun
tion prologs, the 
ode resulting from pro
edural

abstra
tion at ea
h return blo
k for a fun
tion might have the following stru
ture,

with three instru
tions to manage the 
ontrol transfers and sta
k pointer update:

...

bsr r1, Restore /* 
all fun
tion that restores registers */

sp = sp + k /* deallo
ate sta
k frame */

ret (ra) /* return */

If we 
ould somehow move the instru
tion for deallo
ating the sta
k frame into

the fun
tion that restores saved registers, there would be no need to return to the

fun
tion f whose epilog we are abstra
ting: 
ontrol 
ould return dire
tly to f 's


aller (in e�e
t realizing tail 
all optimization). The problem is that the 
ode to

restore saved registers is used by many di�erent fun
tions, whi
h in general have

sta
k frames of di�erent sizes, and hen
e need to adjust the sta
k pointer by di�erent

amounts. The solution to this problem is to pass, as an argument to the fun
tion

that restores registers, the amount by whi
h the sta
k pointer must be adjusted.

Sin
e the return address register ra is guaranteed to be free at this point|it is

about to be overwritten with f 's return address prior to returning 
ontrol to f 's


aller|it 
an be used to pass this argument.

7

Sin
e there is now no need for 
ontrol

to return to f after the registers have been restored|it 
an return dire
tly to f 's


aller|we 
an simply jump from fun
tion f to the fun
tion that restores registers,

instead of using a fun
tion 
all. The resulting 
ode requires two instru
tions instead

of three in ea
h fun
tion return blo
k:

7

In pra
ti
e not all fun
tions 
an be guaranteed to follow the standard 
alling 
onvention, so it is

ne
essary to verify that register ra is, in fa
t, being used as the return address register by f .
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to f0’s caller(s) to ’s caller(s)f1

. . .

15

14

9

ra

ldq  r15, 0x38(sp)

ldq r14, 0x30(sp)

ldq  r9, 0x8(sp)

Restore

Restore

Restore

Restore

ra = 32 ra = 40
f0: f1:

sp  =  sp + ra
stq ra, 0x8(sp)
ldq   ra, 0(sp)
ldq   sp, 0x8(sp)
ret    (ra)

Fig. 6. Example 
ode from abstra
tion of register restore a
tions from fun
tion epilogs.

ra = k /* sp needs to be adjusted by k */

br Restore /* jump to fun
tion that restores registers */

The 
ode in the fun
tion that restores registers is pretty mu
h what one would

expe
t. Unlike the situation for register save sequen
es dis
ussed in Se
tion 3.5.1,

we need only one fun
tion for restoring registers. The reason for this is that there is

no need to 
all this fun
tion: 
ontrol 
an jump into it dire
tly, as dis
ussed above.

This means that we do not have to generate di�erent versions of the fun
tion with

di�erent return address registers. The overall stru
ture of the 
ode is analogous to

that for saving registers: there is a 
hain of basi
 blo
ks, ea
h of whi
h restores a


allee-saved register, with 
ontrol falling through into the next blo
k, whi
h saves

the next (lower-numbered) 
allee-saved register, and so on. The last member of

this 
hain adjusts the sta
k pointer appropriately, loads the return address into a

register, and returns. There is, however, one minor twist at the end. The amount

by whi
h the sta
k pointer must be adjusted is passed in register ra, so this register


annot be overwritten until after it has been used to adjust the sta
k pointer. On

the other hand, sin
e the memory lo
ation from whi
h f 's memory address is to

be restored is in f 's sta
k frame, we 
annot adjust the sta
k pointer until after the

return address has been loaded into ra. At �rst glan
e, it seems that the problem


an be addressed using something like the following instru
tion sequen
e:

sp = sp + ra /* sp = sp + ra � new sp */

ra = sp - ra /* ra = sp - ra � old sp */

ra = load 0(ra) /* ra = return address */

ret (ra)

This 
ode is in
orre
t, however, be
ause the sta
k pointer is updated|i.e., the sta
k

frame is deallo
ated|before the return address is loaded from the sta
k frame. As

a result, if an interrupt o

urs between the end of the �rst instru
tion and the

beginning of the third instru
tion, the return address may be overwritten, resulting

in in
orre
t behavior. To avoid this, we have to ensure that the sta
k pointer update

is the last instru
tion before the ret instru
tion. We do this by �rst 
omputing the

new value of the sta
k pointer and storing it in the sta
k frame (in the slot where the

�rst 
allee-saved register, was originally stored), then updating the return address
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register, and �nally loading the new value of the sta
k pointer from memory:

8

ra = sp + ra /* ra = sp + ra � new sp */

8(sp) = store ra /* new sp saved at lo
ation 8(sp) */

ra = load 0(sp) /* ra = return address */

sp = load 8(sp) /* sp = new sp */

ret (ra)

The resulting 
ode for restoring saved registers, for the fun
tions 
onsidered in the

example illustrated in Figure 5, is shown in Figure 6.

We go through these 
ontortions in order to minimize the number of registers

used. If we 
ould �nd another register that is free at the end of every fun
tion, we


ould load the return address into this register, resulting in somewhat simpler 
ode.

However, in general it is not easy to �nd a register that is free at the end of every

fun
tion. The reason we go to su
h lengths to eliminate a single instru
tion from

ea
h return blo
k is that there are a lot of return blo
ks in the input programs,

typi
ally amounting to about 3%{7% of the basi
 blo
ks in a program, ex
luding

return blo
ks for leaf routines that do not allo
ate/deallo
ate a sta
k frame (there

is usually at least one|and, very often, more than one|su
h blo
k for ea
h fun
-

tion). The elimination of one instru
tion from ea
h su
h blo
k translates to a 
ode

size redu
tion of about 1%{2% overall. (This may seem small, but to put it in per-

spe
tive, 
onsider that Cooper and M
Intosh report an overall 
ode size redu
tion

of about 5% using suÆx-tree-based te
hniques.)

3.6 Abstra
ting Partially Mat
hed Blo
ks

As dis
ussed in the pre
eding se
tions, the smallest 
ode unit 
onsidered for pro-


edural abstra
tion by squeeze is the basi
 blo
k. In other words, squeeze will not

attempt to 
arry out any form of pro
edural abstra
tion on two blo
ks that are

not the same, even though there may be a signi�
ant amount of \partial mat
h"

between them, i.e., the blo
ks may share 
ommon subsequen
es of instru
tions.

This is illustrated by the pair of basi
 blo
ks shown in Figure 7(a), with mat
hed

instru
tions indi
ated by lines drawn between them. Our experiments, des
ribed in

this se
tion, indi
ate that abstra
tion of partially mat
hed blo
ks is 
omputation-

ally quite expensive but adds very little additional savings in 
ode size. For this

reason we have 
hosen not to in
lude partial mat
hing within squeeze.

There are two issues that have to be addressed when 
onsidering pro
edural ab-

stra
tion of partially mat
hed blo
ks: �rst, how to identify partially mat
hed blo
ks

to abstra
t; and se
ond, how to transform the 
ode to e�e
t this abstra
tion. In

our experiments, abstra
tion of partially mat
hed blo
ks was 
arried out after pro-


edural abstra
tion of \fully mat
hed" blo
ks, dis
ussed in Se
tion 3.3. In general,

a parti
ular basi
 blo
k B

0

may be partially mat
hed against many di�erent blo
ks,

whi
h may mat
h di�erent subsequen
es of its instru
tions. The savings obtained

from pro
edural abstra
tion in this 
ase depends on the blo
k B

1

that is 
hosen as a

mat
h. On
e a blo
k B

1

is partially mat
hed with B

0

and subje
ted to pro
edural

abstra
tion, B

1

is not available for partial mat
hing against other basi
 blo
ks. This

8

We are indebted to Anders Lindgren for pointing out the problem in our original 
ode, as well

as suggesting the solution shown.
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r1 = r2+1

r1 = r1+r3

ld r2, 0(r2)

r3 = r1+8

r4 = r0+4

r1 = r4+r2

st r1, 12(sp)

r1 = r2+1

r1 = r1+r3

st r1, 16(r0)

r3 = r1+8

ld r7, 8(sp)

r2 = r7*r3

r1 = r4+r2

st r1, 12(sp)

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

(a) A pair of partially mat
hed blo
ks.

ld  r2, 0(r2)
B1

st  r1, 16(r0)

r4 = r0+4 ld  r7, 8(sp)
r2 = r7*r3

r1 = r2+1
r1 = r1+r3

r3 = r1+8

st  r1, 12(sp)
r1 = r4+r2

B0

B2

B3

B4 B5

B6

return

ld  r2, 0(r2)
B1

r3 = r1+8
r4 = r0+4

r1 = r2+1
r1 = r1+r3

B0

B2
st  r1, 16(r0)
r3 = r1+8
ld  r7, 8(sp)
r2 = r7*r3

st  r1, 12(sp)
r1 = r4+r2

B6

return

(b) Pro
edure obtained from the maximal

mat
hing

(
) Pro
edure obtained after unmat
hing

unpro�table instru
tions

Fig. 7. Pro
edural abstra
tion of partially mat
hed blo
ks.

means that even though, from B

0

's perspe
tive, B

1

may yield the largest savings

when pro
edural abstra
tion is 
arried out, this may not be the best 
hoi
e globally,

sin
e we may have obtained greater savings by mat
hing B

1

with some other blo
k.

The problem of 
omputing a globally optimal set of partial mat
hes for a set of

basi
 blo
ks, i.e., one that maximizes the savings obtained from their pro
edural

abstra
tion, is 
omputationally diÆ
ult (the related longest 
ommon subsequen
e

problem is NP-
omplete [Garey and Johnson 1979℄). We therefore take a greedy

approa
h, pro
essing basi
 blo
ks in de
reasing order of size. When pro
essing a

blo
k B

0

, we 
ompare it against all other blo
ks and 
hoose a blo
k B

1

that yields

maximal savings (
omputed as dis
ussed below) when pro
edural abstra
tion is


arried out based on partial mat
hing of B

0

and B

1

: B

1

is then put into a partition

asso
iated with B

0

. When all blo
ks have been pro
essed in this manner, all of the

blo
ks in the same partition are abstra
ted into a single pro
edure.

The bene�t obtained from the pro
edural abstra
tion of two partially mat
hed

blo
ks B

0

and B

1

is determined as follows. First, we use dynami
 programming to

determine the minimum edit distan
e between the two blo
ks, and thus the best
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mat
h between them. Now 
onsider the se
ond issue mentioned above, namely,


arrying out the program transformation. Sin
e we have a partial mat
h between

these blo
ks, there will have to be multiple exe
ution paths through the resulting

pro
edure, su
h that the 
all from B

0

will take one path while that from B

1

will

take another. We 
an do this by passing an argument to the abstra
ted pro
edure

indi
ating, for any 
all, whi
h 
all site it originated from, and therefore whi
h

instru
tions it should exe
ute. When s
anning down blo
ks B

0

and B

1

, whenever

we �nd a mismat
hed sequen
e of instru
tions in either blo
k, we generate 
ode

in the abstra
ted pro
edure to test this argument and exe
ute the appropriate

instru
tion sequen
e based on the out
ome. Figure 7(b) shows the 
ontrol 
ow

graph of the resulting pro
edure. In addition to the instru
tions shown, we also

have to manage 
ontrol 
ow. For this, we need a 
onditional bran
h at the end of

blo
ks B0 and B3 (in general, if there are more than two blo
ks in the partition

being abstra
ted, we may need expli
it 
omparison operations to determine whi
h

of a set of alternatives to exe
ute), and an un
onditional bran
h for ea
h of the

pairs of blo
ks fB1, B2g and fB4, B5g, for a total of 15 instru
tions. Noti
e

that by designating the instru
tion in blo
k B3 as a \mat
h" between the two

original blo
ks, and thereby having B3 be 
ommon to the exe
ution paths for both

of the 
all sites of the pro
edure, we save a single 
opy of this instru
tion, but

pay a penalty of two bran
h instru
tions for managing 
ontrol 
ow around it. In

this 
ase, it turns out to be better, when determining the original partial mat
h,

to ignore the fa
t that the two r3 = r1+8 instru
tions 
an be mat
hed. This

would yield the 
ode shown in Figure 7(
), with a total of 14 instru
tions. On the

other hand, if instead of the single mat
hed instru
tion in B3 we had a sequen
e

of, say, 10 mat
hed instru
tions, the savings in
urred from 
ombining them into

a single blo
k within the abstra
ted pro
edure would outweigh the 
ost of the

additional instru
tions needed to manage 
ontrol 
ow. As this example illustrates,

the minimal edit distan
e between the two blo
ks does not ne
essarily yield the

greatest savings: sometimes we 
an do better by ignoring some mat
hes. It is not

obvious that the dynami
 programming algorithm for 
omputing minimum edit

distan
e 
an be modi�ed in a straightforward way to a

ommodate this. Instead

we use a postpro
essing phase to \unmat
h" instru
tions that in
ur too great a


ontrol 
ow penalty.

Even with the improvement of unmat
hing instru
tions where a mat
h is not

deemed pro�table, the 
ost of 
ontrol 
ow management signi�
antly lowers the

overall bene�ts of pro
edural abstra
tion based on partial mat
hes. In the example

shown in Figure 7, for example, at ea
h 
all site for the resulting pro
edure we

would need two additional instru
tions|one to set the argument register identifying

the 
all site, another to 
arry out the 
ontrol transfer|for an overall total of 18

instru
tions. By 
ontrast, the two original basi
 blo
ks shown in Figure 7(a) 
ontain

a total of 15 instru
tions. Thus, despite the signi�
ant partial mat
h between these

two blo
ks, it is not pro�table in this 
ase to abstra
t them out into a pro
edure.

In general, we found that pro
edural abstra
tion based on partial mat
hes in
urs a

large 
omputational 
ost, but yields overall 
ode size savings of around 0.4{0.6%.

We obtained similar results with a number of other variations on this s
heme,

su
h as fa
toring out only 
ommon suÆxes or pre�xes of blo
ks. Be
ause of the

high 
omputational 
ost of this transformation and the low bene�t it produ
es, we
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de
ided not to in
lude it within squeeze.

4. INTERACTIONS BETWEEN CLASSICAL OPTIMIZATIONS AND CODE FAC-

TORING

There is 
onsiderable eviden
e that (appropriately 
ontrolled) optimization 
an

yield signi�
ant redu
tions in 
ode size. Compiler \folklore" has it that some

amount of peephole optimization 
an speed up the overall 
ompilation pro
ess be-


ause of the resulting redu
tion in the number of instru
tions that have to be pro-


essed by later phases.

9

Cooper and M
Intosh [1999℄ observe 
ode size redu
tions

of about 18% due to 
ompiler optimizations, while our own experiments, dis
ussed

in Se
tion 5, indi
ate that enabling optimizations that do not in
rease 
ode size

yield a 
ode size redu
tion of about 20% on the average.

However, sin
e 
lassi
al 
ompiler optimizations are aimed primarily at in
reas-

ing exe
ution speed, the redu
tions in size they produ
e are, in many 
ases, the

happy but 
oin
idental out
ome of transformations whose primary goal is a redu
-

tion in exe
ution time. Examples of transformations that 
an, in some situations,

lead to an in
rease in 
ode size in
lude ma
hine-independent optimizations su
h as

partial-redundan
y elimination, pro
edure inlining, and shrink wrapping, as well

as ma
hine-dependent optimizations su
h as instru
tion s
heduling and instru
tion


a
he optimization, both of whi
h 
an result in the insertion of no-ops for align-

ment purposes. Even for transformations that lead to 
ode size redu
tions, using

exe
ution speed improvement as the primary goal of optimization 
an yield smaller

size redu
tions than might be possible otherwise. For example, in the lo
al fa
tor-

ing transformation dis
ussed in Se
tion 3.1, if an instru
tion 
an be hoisted either

upward or downward, it is preferable to hoist it downward, sin
e this 
an yield

greater size redu
tions. However, if our primary goal is in
reasing exe
ution speed,

we would prefer to hoist it upward instead, so as to hide laten
ies.

This dis
ussion does not take into a

ount intera
tions between 
lassi
al opti-

mizations, whose primary goal is a redu
tion in exe
ution time, and 
ode-fa
toring

transformations, whose primary goal is a redu
tion in 
ode size. As a simple exam-

ple, 
onsider the 
ode sequen
es in the following two basi
 blo
ks:

Blo
k B

1

Blo
k B

2

load r1, 8(sp) load r1, 8(sp)

add r1, r2, r3 add r1, r2, r3

load r1, 12(sp) (*)

add r4, r5, r6 add r4, r5, r6

add r1, r4, r1 (*)

mul r3, r6, r3 mul r3, r6, r3

add r3, r5, r3 add r3, r5, r3

store r3, 16(sp) store r3, 16(sp)

As presented, these two blo
ks are di�erent, and 
annot be subje
ted to pro
edu-

ral abstra
tion into the same pro
edure. If the 
ompiler determines that the two

instru
tions in blo
k B

2

marked as (*) are dead (e.g., due to 
ode-eliminating op-

timizations elsewhere that 
ause r1 to be
ome dead at the end of blo
k B

2

), and

eliminates them, the two blo
ks then be
ome identi
al and 
an be fa
tored out into

9

We believe this observation is due to W. A. Wulf.
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a pro
edure. However, if the 
ompiler does an even better job of optimization,

and is able to �nd a free register in blo
k B

1

that allows it to eliminate the load

instru
tion in that blo
k, the two blo
ks again be
ome di�erent and 
annot be ab-

stra
ted into a pro
edure. Noti
e that in the latter 
ase, the 
ompiler's de
ision

to eliminate the load instru
tion is a lo
ally good de
ision|it redu
es 
ode size by

one instru
tion and is likely to improve speed|but, from the standpoint of 
ode


ompa
tion, not su
h a good de
ision globally.

Intera
tions su
h as these give rise to a phase-ordering problem between size-

oriented and speed-oriented transformations. One possible way to deal with this

would be to iterate the transformations to a �xpoint. However, this is not a sat-

isfa
tory solution, be
ause transformations su
h as 
ode fa
toring require a lot of


ode sequen
e 
omparisons to identify repeated instru
tion sequen
es that 
an be

fa
tored out, and therefore are quite expensive; iterating over them is likely to be

so expensive as to be impra
ti
al. We 
urrently do not do perform su
h iteration.

5. EXPERIMENTAL RESULTS

To evaluate our ideas, we used the eight SPEC-95 integer ben
hmarks, as

well as six embedded appli
ations, adp
m, epi
, gsm, mpeg2de
, mpeg2en
,

and rasta, obtained from the MediaBen
h ben
hmark suite from UCLA

(http://www.
s.u
la.edu/~lee
/mediaben
h). We evaluated squeeze on 
ode

obtained from two di�erent C 
ompilers: the vendor-supplied C 
ompiler 

 V5.2-

036, invoked as 

 -O1, and the GNU C 
ompiler g

 version 2.7.2.2, at optimization

level -O2. The programs were 
ompiled with additional 
ags instru
ting the linker

to retain relo
ation information and to produ
e stati
ally linked exe
utables.

10

The

optimization level 
hosen for ea
h 
ompiler was sele
ted to allow \standard" op-

timizations ex
ept for those, su
h as pro
edure inlining and loop unrolling, that


an in
rease 
ode size. At optimization level -O1, the vendor-supplied 
ompiler 




arries out lo
al optimizations and re
ognition of 
ommon subexpressions; global

optimizations in
luding 
ode motion, strength redu
tion, and test repla
ement; split

lifetime analysis; and 
ode s
heduling; but not size-in
reasing optimizations su
h as

inlining; integer multipli
ation and division expansion using shifts; loop unrolling;

and 
ode repli
ation to eliminate bran
hes. Similarly, at the -O2 level of optimiza-

tion, the g

 
ompiler 
arries out most supported optimizations that do not involve

a spa
e-speed trade-o�. In parti
ular, loop unrolling and fun
tion inlining are not


arried out.

The baseline for our measurements is 
ode optimized by the 
ompiler as dis-


ussed above, but with unrea
hable 
ode and no-ops removed and pro�le-guided


ode layout|whi
h 
an improve performan
e signi�
antly, but is not 
arried out

by either of the 
ompilers we used for our experiments|
arried out. This elimi-

nates library routines that are not referen
ed by the program but whi
h get linked

into the program be
ause of referen
es to other routines in the library, and ex-


ludes size redu
tions that 
ould be trivially obtained by a traditional 
ompiler.

We in
lude pro�le-dire
ted 
ode layout in the baseline to allow a fair 
omparison:

10

The requirement for stati
ally linked exe
utables is a result of the fa
t that squeeze relies on the

presen
e of relo
ation information for its 
ontrol 
ow analysis. The Tru64 Unix linker ld refuses

to retain relo
ation information for exe
utables that are not stati
ally linked.
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Table I. Code Size Improvements Due To Di�erent Transformations

Transformation Savings (%)

redundant 
omputation elimination 34.14

Basi
 blo
k and region abstra
tion 27.42

Useless 
ode elimination 22.43

Register save/restore abstra
tion 9.95

Other inter-pro
edural optimizations 6.06

squeeze 
arries out this optimization, and we do not want the resulting performan
e

improvements to unduly in
ate the exe
ution speed of the resulting exe
utables.

To obtain instru
tion 
ounts, we �rst disassemble the exe
utable �les and dis
ard

unrea
hable 
ode and no-op instru
tions. This eliminates library routines that are

linked in but are not a
tually 
alled, as well as any no-op instru
tions that may have

been inserted by the 
ompiler for instru
tion s
heduling or alignment purposes. To

identify unrea
hable 
ode, we 
onstru
t a 
ontrol 
ow graph for the entire program

and then 
arry out a rea
hability analysis. In the 
ourse of 
onstru
ting the 
ontrol


ow graph, we dis
ard un
onditional bran
hes. We reinsert those that are ne
essary

after all the 
ode transformations have been 
arried out: during 
ode layout, just

before the transformed 
ode is written out. To get a

urate 
ounts, therefore, we

generate the �nal 
ode layout in ea
h 
ase (i.e., with and without 
ompa
tion) and


ount the total number of instru
tions.

5.1 Code Size

The overall 
ode size redu
tions a
hieved using our te
hniques are summarized in

Figure 8. The 
orresponding raw data are given in Debray et al. [2000℄. Figure

8(a) shows the e�e
ts of squeeze on 
ode 
ompiled using the vendor-supplied C


ompiler 

, while Figure 8(b) shows the e�e
ts of squeeze on 
ode 
ompiled using

the GNU C 
ompiler g

. The 
olumns labeled \Unoptimized" refer to programs


ompiled at optimization level -O0, where no optimization is 
arried out, and serve

as a referen
e point to indi
ate how mu
h 
ode size redu
tion is realized using only

optimizations 
arried out by the 
ompiler, while the 
olumns labeled \Base" refer to


ode optimized at the appropriate level, as dis
ussed above, with unrea
hable 
ode

and no-ops removed. It 
an be seen from Figure 8 that by using 
lassi
al 
ompiler

optimizations, ea
h of these 
ompilers is able to a
hieve signi�
ant improvements

in 
ode size 
ompared to the unoptimized 
ode: 

 obtains a size redu
tion of just

over 10% on the average, while g

 is able to a
hieve an average size redu
tion

of about 20%. More importantly, however, it 
an be seen that, even when given

the already optimized exe
utables as input, squeeze is able to a
hieve signi�
ant

further redu
tions in size. For the 

-
ompiled programs it a
hieves an average size

redu
tion of just over 30%, while for the g

-
ompiled programs the average size

redu
tion is a little over 28%. The greatest redu
tion in size is about 40% for the

adp
m program, while the smallest is about 15{17% for the go program.

Table I gives a breakdown of the average 
ontribution of di�erent kinds of 
ode

transformations toward the 
ode size redu
tions we a
hieve. Four 
lasses of transfor-

mations a

ount for most of these savings. About a third of the savings 
omes from
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Fig. 8. E�e
ts of 
ompa
tion on 
ode size (normalized).

the elimination of redundant 
omputations of the global pointer register gp; about

27% 
omes from \ordinary" pro
edural abstra
tion; ar
hite
ture-spe
i�
 abstra
-

tion of register save/restore sequen
es a

ounts for another 10%; and useless-
ode

elimination a

ounts for about 22% of the savings. (Re
all that our baseline pro-

grams have already had unrea
hable 
ode and no-ops removed. The �gure given

here refers to 
ode that subsequently be
omes useless, due to interpro
edural opti-

mization, as dis
ussed in Se
tion 2.1.) The remainder of the savings arise due to a

variety of interpro
edural optimizations.

We also measured the extent to whi
h basi
 blo
ks of di�erent sizes 
ontribute

to the overall savings due to pro
edural abstra
tion. For small basi
 blo
ks, the

savings per blo
k abstra
ted tend to be small, but the likelihood of �nding other

similar blo
ks, and thereby in
reasing the total resulting savings, is large. The
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Fig. 9. Contribution to pro
edural abstra
tion savings for basi
 blo
ks of di�erent sizes.

opposite is true for large blo
ks: ea
h basi
 blo
k that is abstra
ted a

rues a

signi�
ant savings, but the likelihood of �nding similar or identi
al blo
ks that 
an

be abstra
ted is not as high. The distribution of the average savings we observed

for our ben
hmarks is shown in Figure 9. It 
an be seen that small blo
ks a

ount

for a signi�
ant amount of the savings: about 7% of the savings 
omes from blo
ks


ontaining just two instru
tions, while 
lose to 15% 
omes from blo
ks 
ontaining

three instru
tions. Beyond this the savings generally drop o� as the number of

instru
tions in
reases, ex
ept for a large bump at basi
 blo
ks of size 10. The reason

for this, it turns out, is that very often there is a large number of return blo
ks that

restore all the 
allee-saved registers and the return address register from memory,

deallo
ate the sta
k frame, and then return from the fun
tion. These a
tions require

10 instru
tions on the pro
essor we used. The 
ontribution of large basi
 blo
ks|

those ex
eeding 12 instru
tions in length|is, on the average, quite small, even

though o

asionally we are able to abstra
t blo
ks that are quite long. (In the g



and vortex ben
hmarks, basi
 blo
ks of up to 25 instru
tions are abstra
ted. In the

rasta ben
hmark, su
h blo
ks 
an be up to 44 instru
tions long.)

As mentioned earlier, our experiments use stati
ally linked exe
utables, where

the 
ode for the library routines is linked into the exe
utable by the linker prior to


ompa
tion. It is possible that library 
ode is more (or less) 
ompressible than user


ode. This 
ould happen, for example, if the libraries are 
ompiled using di�erent


ompilers or 
ompiler optimization levels. It is desirable to identify, therefore, the

extent to whi
h the presen
e of library 
ode in
uen
es our results. For example, if

it turns out that library 
ode is highly 
ompressible while user 
ode is not, then our

results would not be readily appli
able to exe
utables that are not stati
ally linked.

To this end, we instrumented squeeze to re
ord, for ea
h addition or deletion of 
ode

during its run, the fun
tion(s) with whi
h the size 
hange should be asso
iated. For

the 
lassi
al optimizations implemented within squeeze, this is straightforward. For

pro
edural abstra
tion, we use the following approa
h. Suppose that n di�erent

instan
es of a parti
ular 
ode fragment were abstra
ted into a pro
edure, resulting

in a net savings in 
ode size of m, then the fun
tion 
ontaining ea
h of these in-

stan
es is 
redited with a savings of m=n instru
tions (not ne
essarily an integral

quantity). We then use a list of fun
tions in the user 
ode, obtained using a modi-
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Fig. 10. Contributions to 
ode size redu
tion: User 
ode versus libraries.

�ed version of the l

 
ompiler [Fraser and Hanson 1995℄, to estimate the total size

of user 
ode and the 
ode savings attributable to it. These measurements do not

a

ount for indire
t e�e
ts of having the library 
ode available for inspe
tion, su
h

as improved pre
ision of data
ow analyses, whi
h may give rise to additional op-

portunities for optimization. Nevertheless, this information is useful for obtaining

qualitative estimates of the in
uen
e of library 
ode on our overall numbers. Our

results are shown in Figure 10. The bars labeled \User 
ode" represent the fra
tion

of instru
tions in user 
ode, relative to the total number of user 
ode instru
tions,

that were deleted in the pro
ess of 
ode 
ompa
tion, while those labeled \Libraries"

give the 
orresponding �gures for library 
ode. For both the user 
ode and libraries,

the amount of redu
tion in 
ode size typi
ally ranges from around 25% to around

30%, with an average redu
tion of about 27% for user 
ode and about 26% for

library 
ode.

11

There are a few programs (li, perl, vortex, adp
m) where the user


ode is noti
eably more 
ompressible than the libraries, and a few others (go, gsm,

rasta) where the libraries are more 
ompressible. In general, however, the user and

library 
ode are more or less 
omparable in their 
ontribution to the overall 
ode

size redu
tion measured.

5.2 Code Speed

One intuitively expe
ts the programs resulting from the 
ode 
ompa
tion te
hniques

des
ribed here to be slower than the original 
ode, primarily be
ause of the addi-

tional fun
tion 
alls resulting from the pro
edural abstra
tion that o

urs. A more


areful 
onsideration indi
ates that the situation may be murkier than this simple

analysis suggests, for a number of reasons. First, mu
h of the 
ode size redu
tion is

due to aggressive interpro
edural optimizations that also improve exe
ution speed.

Se
ond, transformations su
h as pro�le-dire
ted 
ode layout, whi
h need not have a

large e�e
t on 
ode size, 
an nevertheless have a signi�
ant positive e�e
t on speed.

On the other hand, on a supers
alar pro
essor su
h as the Alpha 21164, slow-downs


an o

ur in the 
ompressed 
ode for reasons other than pro
edural abstra
tion,

e.g., due to the elimination of no-ops inserted by the instru
tion s
heduler in order

11

These numbers refer to the 
ontrol 
ow graph prior to 
ode layout, i.e., before un
onditional

bran
hes are added while linearizing the graph.
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to align the instru
tions so as to in
rease the number of instru
tions issued per


y
le.

To determine the a
tual e�e
t of our transformations on our ben
hmarks, we


ompared the exe
ution times of the original optimized exe
utables with those

resulting from the appli
ation of squeeze to these exe
utables. Exe
ution pro�les,

in the form of basi
 blo
k exe
ution 
ounts, were obtained for ea
h program using

pixie, and these were fed ba
k to squeeze during 
ode 
ompa
tion. The SPEC

ben
hmarks were pro�led using the SPEC training inputs and subsequently timed

on the SPEC referen
e inputs. For ea
h of the remaining ben
hmarks, we used the

same input for both pro�ling and subsequent timing. The timings were obtained on

a lightly loaded Compaq Alpha workstation with a 300-MHz Alpha 21164 pro
essor

with a split primary dire
t mapped 
a
he (8 KB ea
h of instru
tion and data


a
he), 96 KB of on-
hip se
ondary 
a
he, 2 MB of o�-
hip se
ondary 
a
he, and

512 Mbytes of main memory, running Tru64 Unix 4.0. Our results are shown

in Figure 11. The 
orresponding raw data are given in Debray et al. [2000℄. In

ea
h 
ase, the exe
ution time was measured as the smallest time of 10 runs. The


olumns labeled \Original" refer to the exe
ution times of the inputs optimized

at the appropriate level for ea
h 
ompiler, as dis
ussed earlier, but without the

elimination of unrea
hable 
ode and no-ops. These are provided as a referen
e

point. The 
olumns labeled \Base" refer to exe
utables obtained by removing

unrea
hable 
ode and no-ops from the original exe
utables and then performing

pro�le-dire
ted 
ode layout. The exe
ution times of the exe
utables produ
ed by

squeeze 
orrespond to the 
olumns labeled \Squeezed."

The results of our timing experiments indi
ate that it is by no means a foregone


on
lusion that squeezed 
ode will be slower than original 
ode. For many of our

ben
hmarks, the squeezed 
ode runs signi�
antly faster than the original. For

example, for the 
ompress ben
hmark 
ompiled using 

, the squeezed exe
utable

is about 11% faster than the base and original exe
utables, and using g

, it is

about 23% faster than the base and original exe
utables. For m88ksim 
ompiled

using 

, the squeezed exe
utable is about 35% faster than the base and about

36% faster than the original, and using g

, it is about 30% faster than both the

base and original. For perl 
ompiled using 

, it is about 28% faster than the base

and about 22% faster than the original, and using g

, it is about 13% faster than

the base and original. Only two programs su�er slow-downs as a result of 
ode


ompa
tion: vortex and epi
, both under the g

 
ompiler. The former slows down

by about 10%, the latter by about 23%. The reasons for these slow-downs are

dis
ussed in Se
tion 5.3. Overall, for the set of ben
hmarks 
onsidered, the average

speedup, 
ompared to both the base and original programs, is about 16% for the



-
ompiled exe
utables and about 10% for the exe
utables obtained using g

. In

other words, 
ode 
ompa
tion yields signi�
ant speed improvements overall, and

the 
ompressed 
ode performs favorably even when the performan
e of the original


ode is enhan
ed via pro�le-guided 
ode layout. The reasons for this, explored

in Se
tion 5.3, are generally that for most of our ben
hmarks, the squeezed 
ode

experien
es signi�
ant de
reases in the number of instru
tion 
a
he misses and the

average amount of instru
tion-level parallelism that 
an be sustained.



30 � Saumya Debray et al.

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Original
Base
Squeezed

(a) Compiler: 



compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Original
Base
Squeezed

(b) Compiler: g



Fig. 11. E�e
ts of 
ompa
tion on exe
ution time (normalized).

5.3 Low-Level Dynami
 Behavior

To better understand the dynami
 behavior of programs subje
ted to 
ode 
om-

pa
tion, we examined various aspe
ts of their low-level exe
ution 
hara
teristi
s.

Our results, whi
h are summarized in Figure 12, were obtained using hardware


ounters on the pro
essor, in ea
h 
ase using the smallest of three runs of the

program.

5.3.1 Total Instru
tions Exe
uted. Code size redu
tions during 
ode 
ompa
tion


ome from two sour
es: interpro
edural optimization and 
ode fa
toring. Some in-

terpro
edural optimizations redu
e the number of instru
tions exe
uted: for exam-

ple, the elimination of unne
essary gp register 
omputations, elimination of no-ops

inserted for alignment and instru
tion s
heduling, dead-
ode elimination, and inlin-

ing of pro
edures 
alled from a single 
all site. Other optimizations, in parti
ular

the elimination of unrea
hable 
ode, have no e�e
t on the number of instru
tions

exe
uted. Code fa
toring, on the other hand, leads to the exe
ution of additional
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(
) Instru
tion-level parallelism

Original Base SqueezedKey:

Fig. 12. Low-level dynami
 behavior.

bran
h instru
tions for the pro
edure 
alls and returns, and so always results in an

in
rease in the number of instru
tions exe
uted.

Figure 12(a) shows the relative number of instru
tions exe
uted by the original

and the squeezed programs, 
ompared to the base program. As one might ex-

pe
t, sin
e the only di�eren
e between the original and base programs is that the

base program has had unrea
hable 
ode and no-ops eliminated, the base program

always exe
utes fewer instru
tions than the original. Moreover, the di�eren
e be-

tween these|due entirely to eliminated no-ops|is typi
ally not large, ranging from

about 1% to 9% and averaging about 4%. More interestingly, when we 
onsider the


ode generated by squeeze, we �nd that for many programs, the squeezed version
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exe
utes fewer instru
tions than the base programs. For these programs, the re-

du
tion in instru
tions exe
uted resulting from optimizations by squeeze o�set any

dynami
 in
reases due to fa
toring. For other programs, the e�e
ts of 
ode fa
tor-

ing outweigh those due to optimizations, and result in a net in
rease in the number

of instru
tions exe
uted. Overall, we �nd that for the ben
hmarks 
onsidered, the

squeezed versions of the 
ode obtained for 

 exe
ute about 3% fewer instru
tions

on the average than the base versions, while for the g

-
ompiled binaries they

exe
ute a little over 3% more instru
tions, on the average.

5.3.2 Instru
tion Ca
he Misses. Sin
e modern CPUs are signi�
antly faster

than memory, delivering instru
tions to them is a major bottlene
k. A high instru
-

tion 
a
he hit-rate is therefore essential for good performan
e. Primary instru
tion


a
hes, in order to be fast, tend to be relatively small and have low asso
iativity.

This makes it advantageous to lay out the basi
 blo
ks in a program in su
h a way

that frequently exe
uted blo
ks are positioned 
lose to ea
h other, sin
e this is less

likely to lead to 
a
he 
on
i
ts [Pettis and Hansen 1990℄. However, 
ode fa
toring


an undo the e�e
ts of pro�le-dire
ted 
ode layout, by \pulling out" a 
ode frag-

ment into a pro
edure that 
annot be positioned 
lose to its 
all site. The problem

arises when, for example, we have two instan
es of a repeated 
ode fragment that

are not 
lose to ea
h other but where both 
ode fragments are frequently exe
uted.

If these 
ode fragments are fa
tored out into a pro
edure, there will be two fre-

quently exe
uted 
all sites for the resulting pro
edure, and it may not be possible

to lay out the 
ode in a way that positions the body of the pro
edure 
lose to both

of these 
all sites. This 
an lead to an in
rease in instru
tion 
a
he misses.

Figure 12(b) shows the e�e
t of 
ode 
ompa
tion on instru
tion 
a
he misses. For

the 

-
ompiled programs, the 
ompress ben
hmark experien
es a large in
rease in

the number of instru
tion 
a
he misses as a result of fa
toring. For the binaries

obtained from g

, two programs|ijpeg and vortex|su�er large in
reases in the

number of 
a
he misses, while two others|g

 and go|experien
e smaller but

nevertheless noti
eable in
reases. The number of instru
tion 
a
he misses goes

down for the remaining programs; in a few 
ases|notably, 
ompress, li, m88ksim,

epi
, and mpeg2de
|quite dramati
ally. Overall, the squeezed programs in
ur 36%

fewer instru
tion 
a
he misses, on the average, for the 

-
ompiled binaries, and 40%

fewer misses for the g

-
ompiled binaries, than the 
orresponding base programs.

5.3.3 Instru
tion-Level Parallelism. The Alpha 21164 pro
essor, on whi
h our

experiments were run, is a supers
alar ma
hine that 
an exe
ute up to four in-

stru
tions per 
y
le, provided that various s
heduling 
onstraints are satis�ed. For

example, at most two integer and two 
oating-point instru
tions 
an be issued in a


y
le; and no more than one instru
tion in a group of simultaneously issued instru
-

tions should try to a

ess memory or a

ess the same fun
tional unit. Instru
tions

are fet
hed in groups of four, and ea
h su
h group is then examined for opportuni-

ties for multiple issues by evaluating to what extent they satisfy these 
onstraints.

This means that it is possible for a plausible 
ode transformation, su
h as the dele-

tion of a no-op instru
tion, to alter the instru
tion sequen
e in su
h a way that

opportunities for multiple instru
tion issues are redu
ed dramati
ally, with a 
orre-

sponding loss in performan
e (
onversely, the judi
ious insertion of no-ops 
an lead

to an in
rease in the level of instru
tion-level parallelism that 
an be exploited).
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To address this problem, squeeze 
arries out instru
tion s
heduling after all other

transformations have been applied and the �nal 
ode layout has been determined.

Sin
e squeeze eliminates no-ops inserted by the 
ompiler for s
heduling and align-

ment purposes, there is the potential for a signi�
ant loss in instru
tion-level par-

allelism in the 
ode it produ
es. To evaluate whether this is the 
ase, we measured

the average number of instru
tions issued per 
y
le for the various exe
utables. The

results are shown in Figure 12(
). It 
an be seen that the elimination of no-ops

in
urs a pri
e in the base program, where the average number of instru
tions is-

sued per 
y
le is slightly smaller (by about 1% for 

 and 0.5% for g

) than the

original program. However, the instru
tion s
heduler in squeeze is able to over
ome

this problem and, for almost all of the programs tested, is able to attain a higher

number of instru
tions per 
y
le. On the average, the instru
tions issued per 
y
le

in the squeezed programs, 
ompared to the base programs, improves by about 6%

for the 

-
ompiled binaries and about 8% for the g

-
ompiled binaries.

5.3.4 Summary. As Figure 11 shows, two of the 14 ben
hmarks we used, vortex

and epi
 
ompiled under g

, su�er a slowdown as a result of 
ode 
ompa
tion.

Their low-level exe
ution 
hara
teristi
s indi
ate the possible reasons for this. Like

many of the other programs, 
ode 
ompa
tion 
auses an in
rease in the total num-

ber of instru
tions exe
uted for both of these programs. While the other programs

are generally able to 
ompensate for this by improvements elsewhere, vortex su�ers

an in
rease in instru
tion 
a
he misses, and epi
 su�ers a redu
tion in the average

number of instru
tions issued per 
y
le. Some of the other programs in
ur degrada-

tions in some dynami
 exe
ution 
hara
teristi
s but are able to 
ompensate for this

with improvements in other 
hara
teristi
s. For example, 
ompress under 

 and

ijpeg under g

, both of whi
h su�er dramati
 in
reases in the number of instru
tion


a
he misses, are nevertheless able to eke out overall improvements in speed due to

a 
ombination of a redu
tion in the total number of instru
tions exe
uted and|for

ijpeg 
ompiled with g

|an in
rease in the average number of instru
tions issued

per 
y
le.

5.4 The E�e
ts of Code Fa
toring

Figure 13 shows the e�e
t of 
ode fa
toring by itself on 
ode size and exe
ution

time. The raw data are given in Debray et al. [2000℄. The graphs 
ompare squeeze

performing all 
ode transformations ex
ept for 
ode fa
toring, against squeeze with


ode fa
toring enabled. It 
an be seen that fa
toring redu
es the size of the programs

by about 5{6%. An interesting aspe
t of this 
omparison is that the elimination

of 
ode due to various optimizations within squeeze has the e�e
t of redu
ing the

apparent eÆ
a
y of 
ode fa
toring, sin
e 
ode that might otherwise have been

fa
tored is eliminated as useless or unrea
hable. The result of this is that the

greater the 
ode-shrinking e�e
ts of 
lassi
al optimizations, the smaller we �nd the

bene�ts due to fa
toring.

Sin
e the smallest 
ode unit we 
onsider for pro
edural abstra
tion is the basi


blo
k, our approa
h does not pi
k out and abstra
t instru
tion sequen
es that are

subparts of a blo
k. By 
omparison, suÆx-tree based approa
hes su
h as those of

Cooper and M
Intosh [1999℄ are able to abstra
t out repeated-instru
tion sequen
es

that are subsequen
es of a blo
k. Despite this limitation in our approa
h to 
ode
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Fig. 13. Relative impa
t of 
ode fa
toring on 
ode size and exe
ution time.

fa
toring, the relative size redu
tions we obtain via fa
toring are essentially the

same as those of Cooper and M
Intosh. A possible explanation for this is that

the ability to abstra
t out subsequen
es within a basi
 blo
k is likely to make a

di�eren
e only for large basi
 blo
ks, and the proportion of su
h blo
ks generally

tends to be small in most programs.

As one would expe
t, fa
toring 
auses an in
rease in the number of instru
tions

exe
uted. On the average, this results in an in
rease in exe
ution time of about 4%

for the 

-
ompiled binaries, and about 10% for the g

-
ompiled binaries. Some

g

-
ompiled binaries experien
e signi�
ant slow-downs, with vortex slowing down

by about 37%, epi
 by about 23%, and perl by about 18%.

6. CONCLUSIONS

This arti
le fo
uses on the problem of 
ode 
ompa
tion to yield smaller exe
uta-

bles. It des
ribes a \whole-system" approa
h to the problem, where the use of

aggressive interpro
edural optimization, together with pro
edural abstra
tion of

repeated-
ode fragments, yields signi�
antly greater redu
tions in 
ode size than

have been a
hieved to date. For the identi�
ation and abstra
tion of repeated 
ode
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fragments, it departs from 
lassi
al suÆx-tree-based approa
hes. Instead, it uses

information already available in most 
ompilers, su
h as the 
ontrol 
ow graph and

dominator/postdominator trees. Be
ause it does not treat the program as a simple

linear sequen
e of instru
tions, it 
an be more 
exible in its treatment of what 
ode

fragments may be 
onsidered \equivalent." This simpli�es the implementation and

sets up a framework for 
ode 
ompa
tion that 
an be more 
exible in its treatment

of what 
ode fragments are 
onsidered \equivalent." This results in a system that

is able to obtain 
onsiderably greater 
ompa
tion, even on optimized 
ode, than

previous approa
hes, without in
urring signi�
ant performan
e penalties.

APPENDIX

A. THE LOCAL REGISTER-RENAMING ALGORITHM

Suppose we want to rename the registers in a basi
 blo
k B

from

, if possible, to make

it identi
al to a blo
k B

to

. Pseudo
ode for the algorithm used by squeeze for this is

shown in Figure 14. For simpli
ity of exposition, we assume that instru
tions are

of the form reg

3

= reg

1

op reg

2

. The ith operand of an instru
tion I is given by

I:Op[i℄. We assume that operands 1 and 2 are the sour
e operands, and operand

3 is the destination operand. In addition, ea
h instru
tion I has �elds I:oldOp[i℄

that are used to keep tra
k of the operand register before renaming. These �elds

are used to undo the renaming if ne
essary, and are all initialized to ?. The

algorithm maintains two global arrays, InSubst and OutSubst, that keep tra
k of

register moves that have to be inserted at the entry to and exit from the blo
k,

respe
tively, if the renaming is su

essful. Ea
h element of these arrays is initialized

to ?.

The main routine that 
arries out the renaming is RenameBlo
k, illustrated in

Figure 14. The basi
 idea is to work through ea
h instru
tion in B

from

and try

to rename its operands to make it identi
al to the 
orresponding instru
tion in

B

to

without violating any semanti
 
onstraints. If this 
annot be done, or if the

total number of move instru
tions that must be inserted before and after the blo
k

ex
eeds the savings that would be obtained from pro
edural abstra
tion of the

blo
k, the renaming is abandoned. In this 
ase, 
ontrol is transferred to the label

bailout, where the renaming of ea
h instru
tion in the blo
k is undone.

The pseudo
ode for renaming individual operands is shown in Figure 15. The idea

is to re
ord the original value of the operand in the appropriate oldOp �eld of the

instru
tion being renamed, rename the operand, and then propagate this renaming

forward in the basi
 blo
k until the register that is being renamed be
omes rede�ned

or the end of the blo
k is rea
hed.
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fun
tion RenameBlo
k(B

from

, B

to

)

begin

if NumInstr(B

from

) 6= NumInstr(B

to

) return fail;

n := NumInstr(B

from

);

LiveIn := fr j r is live at entry to B

from

g;

LiveRegs := fr j r is live at entry to B

from

g;

NumMoves := 0;

SavedRegs := fr j r is a 
allee-saved register that is saved by the fun
tion 
ontaining B

from

g;

Forbidden := LiveRegs [ fr j r is 
allee-saved and r 62 SavedRegsg;

for i := 1 to n do

ins

from

:= B

from

[i℄ � `reg

from

3

= reg

from

1

op reg

from

2

';

ins

to

:= B

to

[i℄ � `reg

to

3

= reg

to

1

op reg

to

2

';

if (ins

from

6= ins

to

) then

for j 2 f1; 2g do

if reg

from

j

6= reg

to

j

and reg

from

j

2 LiveIn then

if (InSubst[reg

from

j

℄ 6= ?) goto bailout;

InSubst[reg

from

j

℄ := reg

to

j

;

NumMoves += 1;

�

if (Repla
eOp(j; ins

from

; ins

to

; LiveIn) = fail) goto bailout;

od

if the de�nition ins

from

rea
hes the end of B

from

then

if the de�nition ins

to

does not rea
h the end of B

to

goto bailout;

OutSubst[reg

from

3

℄ := reg

to

3

;

NumMoves += 1;

�

if (Repla
eOp(3; ins

from

; ins

to

;Forbidden) = fail) goto bailout;

if (ins

from

6= ins

to

) goto bailout;

LiveIn := LiveIn � freg

from

3

g;

LiveRegs := (LiveRegs � freg

from

3

g) [ freg

to

3

g;

�

od

if (NumMoves + 1 < n) then /* the `+1' is for the bsr that will be added */

InsertMoves(B

from

; InSubst; OutSubst);

return su

ess;

�

bailout:

for i := 1 to n do

ins

from

:= B

from

[i℄;

if (ins

from

:oldOp[1℄ 6= ?) then ins

from

:Op[1℄ := ins

from

:oldOp[1℄;

if (ins

from

:oldOp[2℄ 6= ?) then ins

from

:Op[2℄ := ins

from

:oldOp[2℄;

if (ins

from

:oldOp[3℄ 6= ?) then ins

from

:Op[3℄ := ins

from

:oldOp[3℄;

od

return fail;

end

Fig. 14. Algorithm for lo
al register renaming.
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fun
tion Repla
eOp(k, ins

from

, ins

to

, Forbidden)

begin

r

from

:= ins

from

:Op[k℄;

r

to

:= ins

to

:Op[k℄;

if (r

from

= r

to

) return su

ess;

if (r

to

2 Forbidden) return fail;

ins

from

:oldOp[k℄ := r

from

;

ins

from

:Op[k℄ := r

to

;

for ea
h instru
tion I after ins

from

to the end of the blo
k do

for j 2 f1; 2g do

if (I:Op[j℄ = r

from

) then

if (I:oldOp[j℄ 6= ?) return fail;

I:oldOp[j℄ := r

from

;

I:Op[j℄ := r

to

;

�

od

if (I:Op[3℄ = r

from

) break;

od

return su

ess;

end

fun
tion InsertMoves(B

from

; InSubst; OutSubst)

begin

if 9r : InSubst[r℄ 6= ? then

if B

from

has multiple prede
essors then


reate a new basi
 blo
k B

0

and redire
t all edges entering B

from

to enter B

0

instead;

add an edge from B

0

to B

from

;

else

B

0

:= B

from

;

�

for ea
h r

0

= InSubst[r℄ s.t. r

0

6= ? do

insert an instru
tion `r

0

:= r' in B

0

;

od

�

if 9r : OutSubst[r℄ 6= ? then

if B

from

has multiple su

essors then


reate a new basi
 blo
k B

00

and redire
t all edges out of B

from

to be out of B

00

instead;

add an edge from B

from

to B

00

;

else

B

00

:= B

from

;

�

for ea
h r

0

= OutSubst[r℄ s.t. r

0

6= ? do

insert an instru
tion `r

0

:= r' in B

00

;

od

�

end

Fig. 15. Pseudo
ode for operand repla
ement and move insertion.
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