
Compiler Te
hniques for Code Compa
tion

SAUMYA K. DEBRAY and WILLIAM EVANS

The University of Arizona

ROBERT MUTH

Compaq Computer Corp.

and

BJORN DE SUTTER

University of Ghent

In re
ent years there has been an in
reasing trend toward the in
orporation of
omputers into a

variety of devi
es where the amount of memory available is limited. This makes it desirable to

try to redu
e the size of appli
ations where possible. This arti
le explores the use of
ompiler

te
hniques to a

omplish
ode
ompa
tion to yield smaller exe
utables. The main
ontribution

of this arti
le is to show that
areful, aggressive, interpro
edural optimization, together with

pro
edural abstra
tion of repeated
ode fragments,
an yield signi�
antly better redu
tions in
ode

size than previous approa
hes, whi
h have generally fo
used on abstra
tion of repeated instru
tion

sequen
es. We also show how \equivalent"
ode fragments
an be dete
ted and fa
tored out using

onventional
ompiler te
hniques, and without having to resort to purely linear treatments of
ode

sequen
es as in suÆx-tree-based approa
hes, thereby setting up a framework for
ode
ompa
tion

that
an be more
exible in its treatment of what
ode fragments are
onsidered equivalent.

Our ideas have been implemented in the form of a binary-rewriting tool that redu
es the size of

exe
utables by about 30% on the average.

Categories and Subje
t Des
riptors: D.3.4 [Programming Languages℄: Pro
essors|
ode gen-

eration;
ompilers; optimization; E.4 [Coding and Information Theory℄: Data Compa
tion

and Compression|program representation

General Terms: Experimentation, Performan
e

Additional Key Words and Phrases: Code
ompa
tion,
ode
ompression,
ode size redu
tion

The work of Saumya Debray and Robert Muth was supported in part by the National S
ien
e

Foundation under grants CCR-9711166, CDA-9500991, and ASC-9720738. The work of Bjorn De

Sutter was supported in part by the Fund for S
ienti�
 Resear
h|Flanders under grant 3G001998.

Authors' addresses: S. Debray and W. Evans, Department of Computer S
ien
e, Univer-

sity of Arizona, Tu
son, AZ 85721; email: fdebray, willg�
s.arizona.edu; R. Muth, Al-

pha Development Group, Compaq Computer Corporation, Shrewsbury, MA 01749; email:

Robert.Muth�
ompaq.
om; B. De Sutter, Department of Ele
troni
s and Information Systems,

University of Ghent, B-9000 Gent, Belgium; email: brdsutte�elis.rug.a
.be.

Permission to make digital/hard
opy of all or part of this material without fee is granted

provided that the
opies are not made or distributed for pro�t or
ommer
ial advantage, the

ACM
opyright/server noti
e, the title of the publi
ation, and its date appear, and noti
e is given

that
opying is by permission of the Asso
iation for Computing Ma
hinery, In
. (ACM). To
opy

otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe
i�

permission and/or a fee.

2000 ACM ???

2 � Saumya Debray et al.

1. INTRODUCTION

In re
ent years there has been an in
reasing trend towards the in
orporation of

omputers into a wide variety of devi
es, su
h as palm-tops, telephones, embedded

ontrollers, et
. In many of these devi
es, the amount of memory available is

limited due to
onsiderations su
h as spa
e, weight, power
onsumption, or pri
e.

At the same time, there is an in
reasing desire to use more and more sophisti
ated

software in su
h devi
es, su
h as en
ryption software in telephones, or spee
h or

image pro
essing software in laptops and palm-tops. Unfortunately, an appli
ation

that requires more memory than is available on a parti
ular devi
e will not be

able to run on that devi
e. This makes it desirable to try to redu
e the size of

appli
ations where possible. This arti
le explores the use of
ompiler te
hniques to

a

omplish this
ode
ompa
tion.

Previous work in redu
ing program size has explored the
ompressiblity of a wide

range of program representations: sour
e languages, intermediate representations,

ma
hine
odes, et
. [van de Wiel 2000℄. The resulting
ompressed form either

must be de
ompressed (and perhaps
ompiled) before exe
ution [Ernst et al. 1997;

Franz 1997; Franz and Kistler 1997℄, or it
an be exe
uted (or interpreted [Fraser

and Proebsting 1995; Proebsting 1995℄) without de
ompression [Cooper and M
In-

tosh 1999; Fraser et al. 1984℄. The �rst method results in a smaller
ompressed

representation than the se
ond, but requires the overhead of de
ompression before

exe
ution. De
ompression time may be negligible and, in fa
t, may be
ompensated

for by the savings in transmission or retrieval time [Franz and Kistler 1997℄. A more

severe problem is the spa
e required to pla
e the de
ompressed
ode. This also has

been somewhat mitigated by te
hniques of partial de
ompression or de
ompression-

on-the-
y [Bene�s et al. 1998; Ernst et al. 1997℄, but these te
hniques require altering

the run-time operation or the hardware of the
omputer. In this arti
le, we explore

\
ompa
tion," i.e.,
ompression to an exe
utable form. The resulting form is larger

than the smallest
ompressed representation of the program, but we do not pay

any de
ompression overhead or require more spa
e in order to exe
ute.

Mu
h of the earlier work on
ode
ompa
tion to yield smaller exe
utables treated

an exe
utable program as a simple linear sequen
e of instru
tions, and used pro-

edural abstra
tion to eliminated repeated
ode fragments. Early work by Fraser

et al. [1984℄ used a suÆx tree
onstru
tion to identify repeated sequen
es within a

sequen
e of assembly instru
tions, whi
h were then abstra
ted out into fun
tions.

Applied to a range of Unix utilities on a Vax pro
essor, this te
hnique managed

to redu
e
ode size by about 7% on the average. A short
oming of this approa
h

is that sin
e it relies on a purely textual interpretation of a program, it is sensi-

tive to super�
ial di�eren
es between
ode fragments, e.g., due to di�eren
es in

register names, that may not a
tually have any e�e
t on the behavior of the
ode.

This short
oming was addressed by Baker [1993℄ using parameterized suÆx trees,

by Cooper and M
Intosh [1999℄ using register renaming (Baker and Manber [1998℄

dis
uss a similar approa
h), and by Zastre [1993℄ using parameterized pro
edural

abstra
tions. The main idea is to rewrite instru
tions so that instead of using

hard-
oded register names, the (register) operands of an instru
tion are expressed,

if possible, in terms of a previous referen
e (within the same basi
 blo
k) to that

register. Further, bran
h instru
tions are rewritten, where possible, in PC-relative

Compiler Te
hniques for Code Compa
tion � 3

form. These transformations allow the suÆx tree
onstru
tion to dete
t the rep-

etition of similar but not lexi
ally identi
al instru
tion sequen
es. Cooper and

M
Intosh obtain a
ode size redu
tion of about 5% on the average using these

te
hniques on
lassi
ally optimized
ode (in their implementation,
lassi
al opti-

mizations a
hieve a
ode size redu
tion of about 18%
ompared to unoptimized

ode). These approa
hes nevertheless su�er from two weaknesses. The �rst is that

by fo
using solely on eliminating repeated instru
tion sequen
es, they ignore other,

potentially more pro�table, sour
es of
ode size redu
tion. The se
ond is that any

approa
h that treats a program as a simple linear sequen
e of instru
tions, as in

the suÆx-tree-based approa
hes mentioned above, will su�er from the disadvan-

tage of having to work with a parti
ular ordering of instru
tions. The problem is

that two \equivalent"
omputations may map to di�erent instru
tion sequen
es in

di�erent parts of a program, due to di�eren
es in register usage and bran
h la-

bels, instru
tion s
heduling, and pro�le-dire
ted
ode layout to improve instru
tion

a
he utilization [Pettis and Hansen 1990℄.

This arti
le des
ribes a somewhat di�erent approa
h to
ode
ompa
tion, based

on a \whole-system" approa
h to the problem. Its main
ontribution is to show

that by using aggressive interpro
edural optimization together with pro
edural ab-

stra
tion of repeated
ode fragments, it is possible to obtain signi�
antly greater

redu
tions in
ode size than have been a
hieved to date. For the identi�
ation and

abstra
tion of repeated
ode fragments, moreover, it shows how \equivalent"
ode

fragments
an be dete
ted and fa
tored out without having to resort to purely lin-

ear treatments of
ode sequen
es as in suÆx-tree-based approa
hes. Thus, instead

of treating a program as a simple linear sequen
e of instru
tions, we work with its

(interpro
edural)
ontrol
ow graph. Instead of using a suÆx tree
onstru
tion to

identify repeated instru
tion sequen
es, we use a �ngerprinting s
heme to identify

\similar" basi
 blo
ks. This sets up a framework for
ode
ompa
tion that
an be

more
exible in its treatment of what
ode fragments are
onsidered \equivalent."

We use the notions of dominators and postdominators to dete
t identi
al subgraphs

of the
ontrol
ow graph, larger than a single basi
 blo
k, that
an be abstra
ted out

into a pro
edure. Finally, we identify and take advantage of ar
hite
ture-spe
i�

ode idioms, e.g., for saving and restoring spe
i�
 sets of registers at the entry to and

return from fun
tions. Among the bene�ts of su
h an approa
h is that it simpli�es

the development of
ode
ompa
tion systems by using information already available

in most
ompilers, su
h as the
ontrol
ow graph and dominator/postdominator

trees, thereby making it unne
essary to resort to extraneous stru
tures su
h as

suÆx trees.

Our ideas have been implemented in the form of a binary-rewriting tool based

on alto, a post-link-time
ode optimizer [Muth et al. 1998℄. The resulting sys-

tem,
alled squeeze, is able to a
hieve signi�
antly better
ompa
tion than previous

approa
hes, redu
ing the size of
lassi
ally optimized
ode by about 30%. Our

ideas
an be in
orporated fairly easily into
ompilers
apable of interpro
edural

ode transformations. The
ode size redu
tions we a
hieve
ome from two sour
es:

aggressive interpro
edural appli
ation of
lassi
al
ompiler analyses and optimiza-

tions; and
ode fa
toring, whi
h refers to a variety of te
hniques to identify and

\fa
tor out" repeated instru
tion sequen
es. Se
tion 2 dis
usses those
lassi
al op-

timizations, and their supporting analyses, that are useful for redu
ing
ode size.

4 � Saumya Debray et al.

This is followed, in Se
tion 3, by a dis
ussion of the
ode fa
toring te
hniques used

within squeeze. In Se
tion 4, we dis
uss intera
tions between
lassi
al optimizations

and fa
toring transformations. Se
tion 5
ontains our experimental results.

A prototype of our system is available at www.
s.arizona.edu/alto/squeeze.

2. CLASSICAL ANALYSES AND OPTIMIZATIONS FOR CODE COMPACTION

In the
ontext of
ode
ompa
tion via binary rewriting, it makes little sense to

allow the
ompiler to in
ate the size of the program, via transformations su
h

as pro
edure inlining or loop unrolling, or to keep obviously unne
essary
ode by

failing to perform, for example,
ommon-subexpression elimination and register

allo
ation. We assume therefore that before
ode
ompa
tion is
arried out at

link time, the
ompiler has already been invoked with the appropriate options to

generate reasonably
ompa
t
ode. Nevertheless, many opportunities exist for link-

time
ode transformations to redu
e program size. This se
tion dis
usses
lassi
al

program analyses and optimizations that are most useful for
ode size redu
tion.

In general, the optimizations implemented within squeeze have been engineered so

as to avoid in
reases in
ode size. For example, pro
edure inlining is limited to

those pro
edures that have a single
all site, and no alignment no-ops are inserted

during instru
tion s
heduling and instru
tion
a
he optimization.

2.1 Optimizations for Code Compa
tion

Classi
al optimizations that are e�e
tive in redu
ing
ode size in
lude the elimina-

tion of redundant, unrea
hable, and dead
ode, as well as
ertain kinds of strength

redu
tion.

2.1.1 Redundant-Code Elimination. A
omputation in a program is redundant

at a program point if it has been
omputed previously and its result is guaranteed

to be available at that point. If su
h
omputations
an be identi�ed, they
an

obviously be eliminated without a�e
ting the behavior of the program.

A large portion of
ode size redu
tions at link time in squeeze
omes from the

appli
ation of this optimization to
omputations of a hardware register
alled the

global pointer (gp) register whi
h points to a
olle
tion of 64-bit
onstants
alled a

global address table. The Alpha pro
essor, on whi
h squeeze is implemented, is a 64-

bit ar
hite
ture with 32-bit instru
tions. When a 64-bit
onstant must be loaded

into a register, the appropriate global address table is a

essed via the gp regis-

ter, together with a 16-bit displa
ement.

1

A

essing a global obje
t, i.e., loading

from or storing to a global variable, or jumping to a pro
edure, therefore involves

two steps: loading the address of the obje
t from the global address table, and

then a

essing the obje
t via the loaded address. Ea
h pro
edure in an exe
utable

program has an asso
iated global address table, though di�erent pro
edures may

share the same table. Sin
e di�erent pro
edures|whi
h are generally
ompiled

1

On a typi
al 32-bit ar
hite
ture, with 32-bit instru
tion words and 32-bit registers, a (32-bit)

onstant is loaded into a register via two instru
tions, one to load the high 16 bits of the register

and one for the low 16 bits; in ea
h of these instru
tions, the 16 bits to be loaded are en
oded as

part of the instru
tion word. However, sin
e the Alpha has 32-bit instru
tions but 64-bit registers,

this me
hanism is not adequate for loading a 64-bit
onstant (e.g., the address of a pro
edure or

a global variable) into a register.

Compiler Te
hniques for Code Compa
tion � 5

independently|may need di�erent global pointer values, the value of the gp regis-

ter is
omputed whenever a fun
tion is entered, as well as whenever
ontrol returns

after a
all to another fun
tion. At link time, it is possible to determine whether a

set of fun
tions has the same gp value, and therefore whether the re
omputation of

gp is ne
essary. It turns out that most fun
tions in a program are able to use the

same value of gp, making the re
omputation of gp redundant in most
ases. Ea
h

su
h
omputation of gp involves just one or two register operations, with no sig-

ni�
ant laten
y. On a supers
alar pro
essor su
h as the Alpha, the
orresponding

instru
tions
an generally be issued simultaneously with those for other
omputa-

tions, and hen
e do not in
ur a signi�
ant performan
e penalty. Be
ause of this,

the elimination of gp
omputations generally does not lead to any signi�
ant im-

provements in speed. However, be
ause there are so many re
omputations of gp

in a program, the elimination of redundant gp
omputations
an yield signi�
ant

redu
tions in size.

2.1.2 Unrea
hable-Code Elimination. A
ode fragment is unrea
hable if there is

no
ontrol
ow path to it from the rest of the program. Code that is unrea
hable
an

never be exe
uted, and
an therefore be eliminated without a�e
ting the behavior

of the program.

At link time, unrea
hable
ode arises primarily from the propagation of infor-

mation a
ross pro
edure boundaries. In parti
ular, the propagation of the values

of a
tual parameters in a fun
tion
all into the body of the
alled fun
tion
an

make it possible to stati
ally resolve the out
omes of
onditional bran
hes in the

allee. Thus, if we �nd, as a result of interpro
edural
onstant propagation, that

a
onditional bran
h within a fun
tion will always be taken, and there is no other

ontrol
ow path to the
ode in the bran
h that is not taken, then the latter
ode

be
omes unrea
hable and
an be eliminated.

Unrea
hable
ode analysis involves a straightforward depth-�rst traversal of the

ontrol
ow graph, and is performed as soon as the
ontrol
ow graph of the program

has been
omputed. Initially, all basi
 blo
ks are marked as unrea
hable, ex
ept

for the entry blo
k for the whole program, and a dummy blo
k
alled B

unknown

,

whi
h has an edge to ea
h basi
 blo
k whose prede
essors are not all known (see

Se
tion 2.2.1). The analysis then traverses the interpro
edural
ontrol
ow graph

and identi�es rea
hable blo
ks: a basi
 blo
k is marked rea
hable if it
an be rea
hed

from another blo
k that is rea
hable. Fun
tion
alls and the
orresponding return

blo
ks are handled in a
ontext-sensitive manner: the basi
 blo
k that follows a

fun
tion
all is marked rea
hable only if the
orresponding
all site is rea
hable.

2.1.3 Dead-Code Elimination. Dead
ode refers to
omputations whose results

are never used. The notion of \results not used" must be
onsidered broadly. For

example, if it is possible for a
omputation to generate ex
eptions or raise signals

whose handling
an a�e
t the behavior of the rest of the program, then we
annot

onsider that
omputation to be dead. Code that is dead
an be eliminated without

a�e
ting the behavior of the program.

Link-time opportunities for dead-
ode elimination arise primarily as a result of

unrea
hable-
ode elimination that transforms partially dead
omputations (
om-

putations whose results are used along some exe
ution paths from a program point

but not others) into fully dead ones.

6 � Saumya Debray et al.

2.1.4 Strength Redu
tion. Strength redu
tion refers to the repla
ement of a se-

quen
e of instru
tions by an equivalent but
heaper (typi
ally, faster) sequen
e.

In general, the
heaper instru
tion sequen
e may not be shorter than the origi-

nal sequen
e (e.g., multipli
ation or division operations where one of the operands

is a known
onstant
an be repla
ed by a
heaper but longer sequen
e of bit-

manipulation operations su
h as shifts and adds). The bene�ts for
ode
ompa
tion

ome from situations where the repla
ement sequen
e happens to be shorter than

the original sequen
e.

In squeeze,
ode size improvements from strength redu
tion
ome primarily from

its appli
ation to fun
tion
alls. Like many pro
essors, the Alpha has two di�erent

fun
tion
all instru
tions: the bsr (\bran
h subroutine") instru
tion, whi
h uses

PC-relative addressing and is able to a

ess targets within a �xed displa
ement of

the
urrent lo
ation; and the jsr (\jump subroutine") instru
tion, whi
h bran
hes

indire
tly through a register and
an target any address. The
ompiler typi
ally

pro
esses programs a fun
tion at a time and generates
ode for fun
tion
alls with-

out knowledge of how far away in memory the
allee is. Be
ause of this, fun
tion

alls are translated to jsr instru
tions. This, in turn, requires that the 64-bit

address of the
allee be loaded into a register prior to the jsr. As dis
ussed in

Se
tion 2.1.1, this is done by loading the address of the
allee from a global address

table. The
ode generated for a fun
tion
all
onsists therefore of a load instru
tion

followed by a jsr instru
tion. If this
an be strength-redu
ed to a bsr instru
tion,

we obtain a savings in
ode size as well as an improvement in exe
ution speed.

2.2 Program Analyses for Code Compa
tion

Three program analyses turn out to be of fundamental importan
e for the trans-

formations dis
ussed above, and are dis
ussed in this se
tion.

2.2.1 Control Flow Analysis. Control
ow analysis is essential for all of the op-

timizations dis
ussed in Se
tion 2.1. It is ne
essary for redundant-
ode elimination,

sin
e, in order to identify a
omputation as redundant at a program point, we have

to verify that it has been
omputed along every exe
ution path up to that point.

It is ne
essary for unrea
hable-
ode elimination as well as dead-
ode elimination

be
ause the
lassi�
ation of
ode as unrea
hable or dead relies fundamentally on

knowing the
ontrol
ow behavior of the program. Finally, the strength redu
tion

transformation for fun
tion
alls dis
ussed in Se
tion 2.1.4 relies on the knowledge

of the targets of su
h
alls.

Traditional
ompilers generally
onstru
t
ontrol
ow graphs for individual fun
-

tions, based on some intermediate representation of the program, in a straightfor-

ward way [Aho et al. 1985℄. Things are somewhat more
omplex at link time be
ause

ma
hine
ode is harder to de
ompile. In squeeze, we
onstru
t the interpro
edural

ontrol
ow graph for a program as follows:

(1) The start address of the program appears at a �xed lo
ation within the header

of the �le (this lo
ation may be di�erent for di�erent �le formats). Using this as

a starting point, we use the \standard" algorithm [Aho et al. 1985℄ to identify

leaders and basi
 blo
ks, as well as fun
tion entry blo
ks. We use the relo
ation

information of the exe
utable to identify additional leaders, su
h as jump table

targets, whi
h might otherwise not be dete
ted, and we mark these basi
 blo
ks

Compiler Te
hniques for Code Compa
tion � 7

as relo
atable. At this stage, we make two assumptions: (1) that ea
h fun
tion

has a single entry blo
k and (2) that all of the basi
 blo
ks of a fun
tion are

laid out
ontiguously. If the �rst assumption turns out to be in
orre
t, we

\repair" the
ow graph at a later stage. If the se
ond assumption does not

hold, the
onstru
ted
ontrol
ow graph may
ontain (safe) impre
isions whi
h

may
ause less e�e
tive (size) optimizations.

(2) We add edges to the
ow graph. If the exa
t target of a
ontrol transfer

instru
tion
annot be resolved, we assume that the transfer is to a spe
ial blo
k

B

unknown

(in the
ase of indire
t jumps) or fun
tion F

unknown

(in the
ase of

indire
t fun
tion
alls). We
onservatively assume that B

unknown

and F

unknown

de�ne and use all registers, et
. Any basi
 blo
k whose start address is marked

as relo
atable may be the target of any unresolved indire
t jump. Thus, we

add an edge from B

unknown

to ea
h su
h blo
k. Any fun
tion whose entry point

is marked as relo
atable may be the target of any unresolved indire
t fun
tion

all. Thus, we add a
all edge to it from F

unknown

. (This is safe, but overly

onservative. We dis
uss, below, how this
an be improved.)

(3) We
arry out interpro
edural
onstant propagation on the resulting
ontrol
ow

graph, as des
ribed in Se
tion 2.2.2. We use the results to determine addresses

that are loaded into registers. This information is used, in turn, to resolve

the targets of indire
t jumps and fun
tion
alls. If we
an resolve su
h targets

unambiguously, we repla
e the edge to F

unknown

or B

unknown

by an edge to the

appropriate target.

(4) Thus far, we have assumed that a fun
tion
all returns to its
aller at the

instru
tion immediately after the
all instru
tion. At the level of exe
utable

ode, this assumption
an be violated in two ways.

2

The �rst involves es
ap-

ing bran
hes|ordinary (i.e., non-fun
tion-
all) jumps from one fun
tion into

another|that arise either due to tail
all optimization, or be
ause of
ode shar-

ing in hand-written assembly
ode (su
h as is found in, for example, some nu-

meri
al libraries). The se
ond involves nonlo
al
ontrol transfers via fun
tions

su
h as setjmp and longjmp. Both these
ases are handled by the insertion

of additional
ontrol
ow edges, whi
h we
all
ompensation edges, into the

ontrol
ow graph. In the former
ase, es
aping bran
hes from a fun
tion f

to a fun
tion g result in a single
ompensation edge from the exit node of g

to the exit node of f . In the latter
ase, a fun
tion
ontaining a setjmp has

an edge from F

unknown

to its exit node, while a fun
tion
ontaining a longjmp

has a
ompensation edge from its exit node to F

unknown

. The e�e
t of these

ompensation edges is to for
e the various data
ow analyses to approximate

safely the
ontrol
ow e�e
ts of these
onstru
ts.

(5) Finally, squeeze attempts to resolve indire
t jumps through jump tables, whi
h

arise from
ase or swit
h statements. The essential idea is to use
onstant

propagation to identify the start address of the jump table, and the bounds

2

In some ar
hite
tures, the
allee may expli
itly manipulate the return address under some
ir-

umstan
es. For example, the SPARC
alling
onvention allows an extra word to follow a
all

instru
tion. In su
h a
ase, the
allee in
rements the return address to skip over this word. (We

are grateful to an anonymous referee for pointing this out to us.) Su
h situations do not arise in

the Alpha ar
hite
ture, and are not handled by squeeze.

8 � Saumya Debray et al.

he
k instru
tion(s) to determine the extent of the jump table. The edge from

the indire
t jump to B

unknown

is then repla
ed by a set of edges, one for ea
h

entry in the jump table. If all of the indire
t jumps within a fun
tion
an be

resolved in this way, any remaining edges from B

unknown

to basi
 blo
ks within

that fun
tion are deleted.

Potentially, any pro
edure whose entry-point address is stored in a data se
tion

an have this (relo
atable) address used somewhere in the program as the target

of an indire
t fun
tion
all. Be
ause of this, as mentioned in step (2) above, su
h

pro
edures must be assumed to be rea
hable via indire
t
alls as long as the pro-

gram
ontains any
all whose target is unknown. While this is safe, it is overly

onservative. As dis
ussed in Se
tion 2.1.4, the
ode generated by the
ompiler for

a fun
tion
all typi
ally
onsists of a load from a global address table followed by an

indire
t
all. (A
ompiler
an, in prin
iple, optimize this to a dire
t
all when the

aller and
allee are within the same module, but su
h a s
heme is still ne
essary for

inter-module
alls.) This means that any pro
edure that is a

essible from outside

its own module has its relo
atable address stored in the global address table (whi
h

is in a data se
tion) and hen
e will be
onsidered to be
alled from F

unknown

. As

an indi
ation of how
onservative this simple te
hnique is, we note that for the

programs in the SPECint-95 ben
hmark suite, about 65% of all fun
tions, on the

average, are
onsidered to be
alled from F

unknown

.

Alpha exe
utables
ontain fun
tion relo
ation information that we use to improve

the pre
ision of our
ontrol
ow analysis. The
ompiler uses spe
ial relo
ation en-

tries, referred to as literal relo
ations, to tag every instru
tion that loads a fun
tion

address from a global address table, and every instru
tion that uses this loaded

address. (These relo
ation entries play a purely informational role, in that they

an be ignored by the linker without a�e
ting program behavior.) If every load of a

fun
tion's address is used simply to jump to that address, we remove the edge from

F

unknown

to the fun
tion, and repla
e it with
all edges from the basi
 blo
ks that

ontain the jump instru
tions. If a load of a fun
tion address is not followed by a

jump, the address may be stored and, thus, may equal any unresolved target. In

this
ase, we preserve the edge from F

unknown

to the fun
tion. For the SPECint-95

ben
hmarks, this results in fewer than 14% of the pro
edures having a
all from

F

unknown

. The resulting improvement in
ontrol
ow information has a very sig-

ni�
ant e�e
t on the amount of
ode that
an be eliminated as unrea
hable, and

leads to a signi�
ant improvement in the amount of
ode
ompa
tion that
an be

realized.

2.2.2 Interpro
edural Constant Propagation. As mentioned above, we as-

sume that standard
ompiler analyses and optimizations|in
luding
onstant

propagation|have already been
arried out prior to link-time
ode
ompa
tion.

Where do opportunities for link-time
onstant propagation then arise? It turns

out, not surprisingly, that
onstant values that are propagated at
ompile time are

those that are present in sour
e-level
ompilation units, while those propagated at

link time are either values that are not available at
ompile time, e.g., addresses of

global names, or those that the
ompiler is unable to propagate a
ross
ompilation

unit boundaries, e.g., from a
aller to a
allee. Link-time
onstant propagation

opportunities also arise from ar
hite
ture-spe
i�

omputations that are not visible

Compiler Te
hniques for Code Compa
tion � 9

at the intermediate
ode representation level typi
ally used by
ompilers for most

optimizations. An example of this is the
omputation of the gp register on the

Alpha pro
essor.

The analysis we use in squeeze is essentially standard iterative
onstant prop-

agation, limited to registers but
arried out a
ross the
ontrol
ow graph of the

entire program. This has the e�e
t of
ommuni
ating information about
onstant

arguments from a
alling pro
edure to the
allee. To improve pre
ision, squeeze at-

tempts to determine the registers saved on entry to a fun
tion and restored at the

exit from it. If a register r that is saved and restored by a fun
tion in this manner

ontains a
onstant
 just before the fun
tion is
alled, r is inferred to
ontain the

value
 on return from the
all.

Constant propagation turns out to be of fundamental importan
e for the rest of

the system, sin
e many
ontrol and data
ow analyses rely on the knowledge of

onstant addresses
omputed in the program. For example, the
ode generated by

the
ompiler for a fun
tion
all typi
ally �rst loads the address of the
alled fun
tion

into a register, then uses a jsr instru
tion to jump indire
tly through that register.

If
onstant propagation determines that the address being loaded is a �xed value

and the
allee is not too far away, the indire
t fun
tion
all
an be repla
ed by a

dire
t
all using a bsr instru
tion, as dis
ussed in Se
tion 2.1.4. This is not only

heaper, but also vital for improving the pre
ision of the interpro
edural
ontrol

ow graph of the program, sin
e it lets us repla
e a pair of
all/return edges to

F

unknown

with a pair of su
h edges to the (known)
allee. Another example of the

use of
onstant address information involves the identi�
ation of possible targets

of indire
t jumps through jump tables. Unless this
an be done, we must assume

that the indire
t jump is
apable of jumping to any basi
 blo
k of a fun
tion,

3

and this
an signi�
antly hamper optimizations. Finally, knowledge of
onstant

addresses is useful for optimizations su
h as the removal of unne
essary memory

referen
es. We �nd that on the average, link-time
onstant propagation is able to

determine the values of the arguments and results for about 18% of the instru
tions

of a program. (This does not mean that these \evaluated" instru
tions
an all be

removed, sin
e very often they represent address
omputations for indexing into

arrays or stru
tures or for
alling fun
tions.)

2.2.3 Interpro
edural Register Liveness Analysis. Code fa
toring, dis
ussed in

Se
tion 3, involves abstra
ting repeated instru
tion sequen
es into pro
edures. To

all su
h pro
edures it is ne
essary to �nd a register that
an be used to hold the

return address. Squeeze implements a relatively straightforward interpro
edural

liveness analysis, restri
ted to registers, to determine whi
h registers are live at

any given program point. The analysis is
ontext-sensitive in that it maintains

information about whi
h return edges
orrespond to whi
h
all sites, and propa-

gates information only along realizable
all/return paths. The \standard" data
ow

equations for liveness analysis are extended to deal with idiosyn
ra
ies of the Alpha

instru
tion set. For example, the
all pal instru
tion, whi
h a
ts as the interfa
e

with the host operating system, has to be handled spe
ially, sin
e the registers that

may be used by this instru
tion are not visible as expli
it operands of the instru
-

3

More pre
isely, any basi
 blo
k that is marked as \relo
atable," as dis
ussed in Se
tion 2.2.1.

10 � Saumya Debray et al.

tion. Our implementation
urrently uses the node B

unknown

as the target for su
h

alls. The
onditional move instru
tion also requires spe
ial attention, sin
e the

destination register must also be
onsidered as a sour
e register.

In order to propagate data
ow information only along realizable
all/return

paths, squeeze
omputes summary information for ea
h fun
tion, and models the

e�e
t of fun
tion
alls using these summaries. Given the site of a
all to a fun
tion

f ,
onsisting of a
all node n

and a return node n

r

, the e�e
ts of the fun
tion
all

on liveness information are summarized via two pie
es of information:

(1) mayUse[f ℄ is the set of registers that may be used by f . A register r may be

used by f if there is a realizable path from the entry node of f to a use of r

without an intervening de�nition of r. Hen
e mayUse [f ℄ des
ribes the set of

registers that are live at the entry to f independent of the
alling
ontext, and

whi
h are therefore ne
essarily live at the
all node n

.

(2) byPass [f ℄ is the set of registers whose liveness depends on the
alling
ontext

for f . This
onsists of those registers r su
h that, if r is live at n

r

, then r is

also live at n

.

The analysis pro
eeds in three phases. The �rst two phases
ompute summary

information for fun
tions, i.e., their mayUse and byPass sets. The third phase then

uses this information to do the a
tual liveness
omputation.

It turns out that even
ontext-sensitive liveness analyses may be overly
onser-

vative if they are not
areful in handling register saves and restores at fun
tion
all

boundaries. Consider a fun
tion that saves the
ontents of a register, then restores

the register before returning. A register r that is saved in this manner will appear as

an operand of a store instru
tion, and therefore appear to be used by the fun
tion.

In the subsequent restore operation, register r will appear as the destination of a

load instru
tion, and therefore appear to be de�ned by the fun
tion. A straightfor-

ward analysis will infer that r is used by the fun
tion before it is de�ned, and this

will
ause r to be inferred as live at every
all site for f . To handle this problem,

squeeze attempts to determine, for ea
h fun
tion, the set of registers it saves and

restores.

4

If the set of
allee-saved registers of fun
tion f
an be determined, we
an

use it to improve the pre
ision of the analysis by removing this set from mayUse [f ℄

and adding it to byPass[f ℄ whenever those values are updated during the �xpoint

omputation.

3. CODE FACTORING

Code fa
toring involves (1) �nding a multiply-o

urring sequen
e of instru
tions,

(2) making one representative sequen
e that
an be used in pla
e of all o

urren
es,

and (3) arranging, for ea
h o

urren
e, that the program exe
utes the representative

instead of the o

urren
e. The third step
an be a
hieved by expli
it
ontrol transfer

(via a
all or jump), or by moving the representative of several o

urren
es to a

point that dominates every o

urren
e. We �rst exploit the latter form of
ode

fa
toring, sin
e it involves no added
ontrol transfer instru
tions.

4

We do not assume that a program will ne
essarily respe
t the
alling
onventions with regard

to
allee-saved registers, sin
e su
h
onventions are not always respe
ted in libraries
ontaining

hand-written assembly
ode. This approa
h is safe, though sometimes overly
onservative.

Compiler Te
hniques for Code Compa
tion � 11

B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)
stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

E

Fig. 1. Lo
al
ode fa
toring.

3.1 Lo
al Fa
toring Transformations

Inspired by an idea of Knoop et al. [1994℄, we try to merge identi
al
ode fragments

by moving them to a point that pre- or postdominates all the o

urren
es of the

fragments. We have implemented a lo
al variant of this s
heme whi
h we des
ribe

using the example depi
ted in Figure 1. The left hand side of the �gure shows an

assembly
ode
ow
hart with a
onditional bran
h (beq r0) in blo
k A. Blo
ks B

and C
ontain the same instru
tion add r5,r6,r8. Sin
e these instru
tions do not

have ba
kward dependen
ies with any other instru
tion in B or C, we
an safely

move them into blo
k A just before the beq instru
tion, as shown in the right-hand

side of Figure 1. Similarly, blo
ks B, C, and D share the same store instru
tion

stq r9,r16(r23), and sin
e these instru
tions do not have forward dependen
ies

with any other instru
tion in B, C, and D, they
an be safely moved into blo
k E.

In this
ase, it is not possible to move the store instru
tion from B and C into A

be
ause, due to the la
k of aliasing information, there are ba
kward dependen
ies

to the load instru
tions (ldq) in B and C. In general, however, it might be possible

to move an instru
tion either up or down. In this
ase, we prefer to move it down,

sin
e moving it up, over a two-way bran
h, will eliminate one
opy while moving it

down to a blo
k that has many prede
essors might eliminate several
opies.

Our s
heme uses register reallo
ation to make this transformation more e�e
tive.

For example, the sub instru
tions in B and C write to di�erent registers (r9 and

r19). We
an, however, rename r9 to r19 in B, thereby making the instru
tions

identi
al. Another opportunity rests with the xor instru
tions in B and C. Even

though they are identi
al, we
annot move them into A be
ause they write register

r0 whi
h is used by the
onditional bran
h. Reallo
ating r0 in A to another register

whi
h is dead at the end of A will make the transformation possible.

3.2 Pro
edural Abstra
tion

Given a single-entry, single-exit
ode fragment C, pro
edural abstra
tion of C in-

volves (1)
reating a pro
edure f

C

whose body is a
opy of C and (2) repla
ing

the appropriate o

urren
es of C in the program text by a fun
tion
all to f

C

.

While the �rst step is not very diÆ
ult, the se
ond step, at the level of assembly

12 � Saumya Debray et al.

or ma
hine
ode, involves a little work.

In order to
reate a fun
tion
all using some form of \jump-and-link" instru
tion

that transfers
ontrol to the
allee and at the same time puts the return address into

a register, it is ne
essary to �nd a free register for that purpose. A simple method

is to
al
ulate, for ea
h register r, the number of o

urren
es of
ode fragment C

that
ould use r as a return register. A register with the highest su
h �gure of

merit is
hosen as the return register for f

C

. If a single instan
e of f

C

, using a

parti
ular return register, is not enough to abstra
t out all of the o

urren
es of C

in the program, we may
reate multiple instan
es of f

C

that use di�erent return

registers. We use a more
ompli
ated s
heme when abstra
ting fun
tion prologs

(see Se
tion 3.5.1) and regions of multiple basi
 blo
ks (see Se
tion 3.4).

3.3 Pro
edural Abstra
tion for Individual Basi
 Blo
ks

Central to our approa
h is the ability to apply pro
edural abstra
tion to individual

basi
 blo
ks. In this se
tion, we dis
uss how
andidate basi
 blo
ks for pro
edural

abstra
tion are identi�ed.

3.3.1 Fingerprinting. To redu
e the
ost of
omparing basi
 blo
ks to determine

whether they are identi
al (or similar), we use a �ngerprint fun
tion to
ompute a

�ngerprint for ea
h basi
 blo
k, su
h that two blo
ks with di�erent �ngerprints are

guaranteed to be di�erent. In general, su
h �ngerprint fun
tions are de�ned with

respe
t to the notion of \equality" between basi
 blo
ks. For example, in our
urrent

implementation, two blo
ks are
onsidered to be equal if the instru
tion sequen
es

in them are the same. Thus, the �ngerprint fun
tion of a blo
k is based on the

sequen
e of instru
tions in the blo
k. On the other hand, if a
ode
ompa
tion

s
heme de�nes equality of basi
 blo
ks with respe
t to de�nition-use
hains then

a �ngerprint based on the number of o

urren
es of ea
h type of op
ode may be

used.

In our
urrent implementation, a �ngerprint is a 64-bit value formed by
on
ate-

nating 4-bit en
odings of the op
odes of the �rst 16 instru
tions in the blo
k. Sin
e

most \systems" appli
ations tend to have short basi
 blo
ks,
hara
terizing the �rst

16 instru
tions seems enough for most basi
 blo
ks. This means that two blo
ks

that are di�erent, but whi
h have the same sequen
e of op
odes for their �rst 16

instru
tions, will have the same �ngerprint: we will dis
over them to be di�erent

later, when we a
tually
ompare them instru
tion by instru
tion.

With 4 bits per instru
tion, we
an en
ode 15 di�erent op
odes and reserve one

ode for \other." We de
ide whi
h 15 will be expli
itly represented by
onsidering a

stati
 instru
tion
ount of the program. The 15 most frequently o

urring op
odes

are given distin
t 4-bit patterns. The remaining pattern, 0000, represents op
odes

that are not in the top 15 in frequen
y.

To redu
e the number of pairwise
omparisons of �ngerprints that must be
arried

out, we use a hashing s
heme su
h that basi
 blo
ks in di�erent hash bu
kets are

guaranteed to have di�erent �ngerprints, and so need not be
ompared.

3.3.2 Register Renaming within Basi
 Blo
ks. When we �nd two basi
 blo
ks

that are \similar," i.e., have the same �ngerprint and the same number of instru
-

tions, but whi
h are not identi
al, we attempt to rename the registers in one of

them so as to make the two identi
al. The basi
 idea is very simple: we rename

Compiler Te
hniques for Code Compa
tion � 13

r5 = r4+1
r3 = r5+r2
r6 = r5*r3

B1

r4 = r6*2
r0 = r3-r6

{r1,r2} live

{r3,r4} live

r0 = r1+1

r5 = r0*r1
r3 = r1-r5
r4 = r5*2

r1 = r0+r2

B0

r4 = r1

B1
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

B0
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

r3 = r0

(a) before (b) after

Fig. 2. Example of basi
-blo
k-level register renaming.

registers \lo
ally," i.e., within the basi
 blo
k; and if ne
essary, we insert register-

to-register moves, in new basi
 blo
ks inserted immediately before and after the

blo
k being renamed, so as to preserve program behavior. An example of this is

shown in Figure 2, where blo
k B0 is renamed to be the same as blo
k B1.

For soundness, we have to ensure that the renaming does not alter any use-

de�nition relationships. We do this by keeping tra
k of the set of registers that

are live at ea
h point in the basi
 blo
k, as well as the set of registers that have

already been subje
ted to renaming. These sets are then used to dete
t and dis-

allow renamings that
ould alter the program's behavior. The pseudo
ode for our

renaming algorithm is given in Appendix A.

The renaming algorithm keeps tra
k of the number of expli
it register-to-register

moves that have to be inserted before and after a basi
 blo
k that is being renamed.

The renaming is undone if, at the end of the renaming pro
ess, the
ost of renaming,

i.e., the number of register moves required together with a fun
tion
all instru
tion,

ex
eeds the savings from the renaming, i.e., the number of instru
tions in the blo
k.

Cooper and M
Intosh [1999℄ des
ribe a di�erent approa
h to register renaming.

They
arry out register renaming at the level of entire live ranges. That is, when

renaming a register r

0

to a di�erent register r

1

, the renaming is applied to an

entire live range for r

0

. This has the advantage of not requiring additional register

moves before and after a renamed blo
k, as our approa
h does. However, it has

the problem that register renaming to allow the abstra
tion of a parti
ular pair of

basi
 blo
ks may interfere with the abstra
tion of a di�erent pair of blo
ks. This

is illustrated in Figure 3, where solid double arrows indi
ate identi
al basi
 blo
ks,

while dashed double arrows indi
ate blo
ks that are not identi
al but whi
h
an be

made identi
al via register renaming. Blo
ks B0, B1, and B2
omprise a live range

for register r0, while B3 and B5
omprise a live range for r1. We
an rename r0

to r5 in this live range, so as to make blo
ks B1 and B3 identi
al, but this will

ause blo
ks B2 and B4 to not be identi
al and therefore not abstra
table into a

fun
tion. We
an also rename r5 to r0 in blo
k B3 so as to make it identi
al to

B1, but this will interfere with the abstra
tion of blo
ks B5 and B6. Be
ause of

su
h interferen
e e�e
ts, it is not
lear whether live-range-level renaming produ
es

results that are ne
essarily superior to basi
-blo
k-level renaming. Noti
e that the

14 � Saumya Debray et al.

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

r1 = r0+r1

r3 = r1+r2

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

B4

r1 = r5+r1

r3 = r1+r2

B3

B5

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B0

B1

B2

r0 = load(...)

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B6

r0 r5

r0 r5

Live range for

Live range for

r0

r1

Fig. 3. Interferen
e e�e
ts in live-range-level register renaming.

problem
ould be addressed by judi
iously splitting the live ranges. Indeed, the

lo
al renaming we use
an be seen as the limiting
ase of live-range-level renaming

if splitting is applied until no live range spans more than one basi
 blo
k.

3.3.3 Control Flow Separation. The approa
h des
ribed above will typi
ally not

be able to abstra
t two basi
 blo
ks that are identi
al ex
ept for an expli
it
ontrol

transfer instru
tion at the end. The reason for this is that if the
ontrol transfers

are to di�erent targets, the blo
ks will be
onsidered to be di�erent and so will not

be abstra
ted. Moreover, if the
ontrol transfer instru
tion is a
onditional bran
h,

pro
edural abstra
tion be
omes
ompli
ated by the fa
t that two possible return

addresses have to be
ommuni
ated.

To avoid su
h problems, basi
 blo
ks that end in an expli
it
ontrol transfer

instru
tion are split into two blo
ks: one blo
k
ontaining all the instru
tions in

the blo
k ex
ept for the
ontrol transfer, and another blo
k that
ontains only the

ontrol transfer instru
tion. The �rst of this pair of blo
ks
an then be subje
ted

to renaming and/or pro
edural abstra
tion in the usual way.

The next se
tion des
ribes how
ode fragments larger than a single basi
 blo
k

an be subje
ted to pro
edural abstra
tion.

3.4 Single-Entry/Single-Exit Regions

The dis
ussion thus far has fo
used on the pro
edural abstra
tion of individual

basi
 blo
ks. In general, however, we may be able to �nd multiple o

urren
es of

a
ode fragment
onsisting of more than one basi
 blo
k. In order to apply pro
e-

dural abstra
tion to su
h a region R, at every o

urren
e of R in the program, we

must be able to identify a single program point at whi
h
ontrol enters R, and a

single program point at whi
h
ontrol leaves R. It isn't hard to see that any set of

basi
 blo
ks R with a single entry point and a single exit point
orresponds to a

pair of points (d; p) su
h that d dominates every blo
k in R and p postdominates

every blo
k in R. Conversely, a pair of program points (d; p), where d dominates p

and p postdominates d, uniquely identi�es a set of basi
 blo
ks with a single entry

point and single exit point. Two su
h single-entry, single-exit regions R and R

0

are

onsidered to be identi
al if it is possible to set up a 1-1
orresponden
e ' between

Compiler Te
hniques for Code Compa
tion � 15

their members su
h that B

1

' B

0

1

if and only if (1) B

1

is identi
al to B

0

1

, and (2) if

B

2

is a (immediate) su

essor of B

1

under some
ondition C, and B

0

2

is a (imme-

diate) su

essor of B

0

1

under the same
ondition C, then B

2

' B

0

2

. The algorithm

to determine whether two regions are identi
al works by re
ursively traversing the

two regions, starting at the entry node, and verifying that
orresponding blo
ks are

identi
al.

In squeeze, after we apply pro
edural abstra
tion to individual basi
 blo
ks, we

identify pairs of basi
 blo
ks (d; p) su
h that d dominates p and p postdominates

d. Ea
h su
h pair de�nes a single-entry, single-exit set of basi
 blo
ks. We then

partition these sets of basi
 blo
ks into groups of identi
al regions, whi
h then

be
ome
andidates for further pro
edural abstra
tion.

As in the
ase of basi
 blo
ks, we
ompute a �ngerprint for ea
h region so that

regions with di�erent �ngerprints will ne
essarily be di�erent. These �ngerprints

are, again, 64-bit values. There are 8 bits for the number of basi
 blo
ks in the

region and 8 bits for the total number of instru
tions, with the bit pattern 11...1

being used to represent values larger than 256. The remaining 48 bits are used to

en
ode the �rst (a

ording to a parti
ular preorder traversal of the region) 8 basi

blo
ks in the region, with ea
h blo
k en
oded using 6 bits: two bits for the type

of the blo
k,

5

and four bits for the number of instru
tions in the blo
k. Again, as

in the
ase of basi
 blo
ks, the number of pairwise
omparisons of �ngerprints is

redu
ed by distributing the regions over a hash table.

It turns out that applying pro
edural abstra
tion to a set of basi
 blo
ks is

not as straightforward as for a single basi
 blo
k, espe
ially in a binary rewriting

implementation su
h as ours. The reason is that, in general, when the pro
edure

orresponding to su
h a single-entry, single-exit region is
alled, the return address

will be put into a register whose value
annot be guaranteed to be preserved through

that entire pro
edure, e.g., be
ause the region may
ontain fun
tion
alls, or be
ause

the region may
ontain paths along whi
h that register is overwritten. This means

that the return address register has to be saved somewhere, e.g., on the sta
k.

However, allo
ating an extra word on the sta
k, to hold the return address,
an

ause problems unless we are
areful. Allo
ating this spa
e at the top of the sta
k

frame
an
ause
hanges in the displa
ements of other variables in the sta
k frame,

relative to the top-of-sta
k pointer, while allo
ating it at the bottom of the sta
k

frame
an
hange the displa
ements of any arguments that have been passed on the

sta
k. If there is any address arithmeti
 involving the sta
k pointer, e.g., for address

omputations for lo
al arrays, su
h
omputations may be a�e
ted by
hanges in

displa
ements within the sta
k frame. These problems are somewhat easier to

handle if the pro
edural abstra
tion is being
arried out before
ode generation,

e.g., at the level of abstra
t syntax trees [Franz 1997℄. At the level of assembly

ode [Cooper and M
Intosh 1999; Fraser et al. 1984℄ or ma
hine
ode (as in our

work), it be
omes
onsiderably more
ompli
ated. There are, however, some simple

ases where it is possible to avoid the
ompli
ations asso
iated with having to save

and restore the return address when introdu
ing pro
edural abstra
tions. Here,

we identify two su
h situations. In both
ases, let (d

0

; p

0

) and (d

1

; p

1

) de�ne two

5

In essen
e, the type of a blo
k des
ribes its
ontrol
ow behavior, i.e., whether it
ontains a

pro
edure
all, a
onditional bran
h, an indire
t jump through a jump table, et
.

16 � Saumya Debray et al.

return

d0

p
0

d

p
1

1

return

(a) before

return

d0

p
0

(b) after

Fig. 4. Merging regions ending in returns via
ross-jumping.

identi
al regions.

The �rst
ase involves situations where p

0

and p

1

are return blo
ks, i.e., blo
ks

from whi
h
ontrol returns to the
aller. In this
ase there is no need to use

pro
edural abstra
tion to
reate a separate fun
tion for the two regions. Instead,

we
an use a transformation known as
ross-jumping [Mu
hni
k 1997℄, where the

ode in the region (d

1

; p

1

) is simply repla
ed by a bran
h to d

0

. The transformation

is illustrated in Figure 4.

In the se
ond
ase, suppose that it is possible to �nd a register r that (1) is not

live at entry to either region, and (2) whose value
an be guaranteed to be preserved

up to the end of the regions (r may be a general-purpose register that is not de�ned

within either region, or a
allee-saved register that is already saved and restored

by the fun
tions in whi
h the regions o

ur). In this
ase, when abstra
ting these

regions into a pro
edure p, it is not ne
essary to add any
ode to expli
itly save and

restore the return address for p. The instru
tion to
all p
an simply put the return

address in r, and the return instru
tion(s) within p
an simply jump indire
tly

through r to return to the
aller.

If neither of these
onditions is satis�ed, squeeze tries to determine whether the

return address register
an be safely saved on the sta
k at entry to p, and restored at

the end. For this, it uses a
onservative analysis to determine whether a fun
tion

may have arguments passed on the sta
k, and whi
h, if any, registers may be

pointers into the sta
k frame. Given a set of
andidate regions to be abstra
ted

into a representative pro
edure, it
he
ks the following:

(1) for ea
h fun
tion that
ontains a
andidate region, it must be safe, with respe
t

to the problems mentioned above, to allo
ate a word on the sta
k frame of the

fun
tion;

(2) a register r

0

must be free at entry to ea
h of the regions under
onsideration;

(3) a register r

1

must be free at the end of ea
h of the regions under
onsideration;

and

(4) there should not be any
alls to setjmp()-like fun
tions that
an be a�e
ted

by a
hange in the stru
ture of the sta
k frame.

Compiler Te
hniques for Code Compa
tion � 17

If these
onditions are satis�ed then, on entry, p allo
ates an additional word on

the sta
k and saves the return address (passed via r

0

) into this lo
ation; and, on

exit, loads the return address from this lo
ation (using r

1

) and restores the sta
k

frame. The
urrent implementation of the safety
he
k des
ribed above is quite

onservative in its treatment of fun
tion
alls within a region. In prin
iple, if we

�nd that spa
e
an be allo
ated on the sta
k but have no free registers for the

return address at entry or exit from the abstra
ted fun
tion, it should be possible

to allo
ate an extra word on the sta
k in order to free up a register, but we have

not implemented this.

3.5 Ar
hite
ture-Spe
i�
 Idioms

Apart from the general-purpose te
hniques des
ribed earlier for dete
ting and ab-

stra
ting out repeated
ode fragments, there are ma
hine-spe
i�
 idioms that
an

be pro�tably exploited. In parti
ular, the instru
tions to save and restore registers

(the return address and
allee-saved registers) in the prolog and epilog of ea
h fun
-

tion generally have a predi
table stru
ture and are saved at predi
table lo
ations

within the sta
k frame. For example, the standard
alling
onvention for the Com-

paq Alpha AXP ar
hite
ture under Tru64 Unix

6

treats register r26 as the return

address register (ra) and registers r9 through r15 as
allee-saved registers. These

are saved at lo
ations 0x0(sp), 0x8(sp), 0x10(sp), and so on. Abstra
ting out

su
h instru
tions
an yield
onsiderable savings in
ode size. Su
h ar
hite
ture-

spe
i�
 save/restore sequen
es are re
ognized and handled spe
ially by squeeze, for

two reasons: �rst, these instru
tions often do not form a
ontiguous sequen
e in

the
ode stream; and se
ond, handling them spe
ially allows us to abstra
t them

out of basi
 blo
ks that may not be identi
al to ea
h other.

3.5.1 Abstra
ting Register Saves. In order to abstra
t out the register save in-

stru
tions in the prolog of a fun
tion f into a separate fun
tion g, it is ne
essary to

identify a register that
an be used to hold the return address for the
all from f to

g. For ea
h register r, we �rst
ompute the savings that would be obtained if r were

to be used for the return address for su
h
alls. This is done by totaling up, for ea
h

fun
tion f where r is free at entry to f , the number of registers saved in f 's prolog.

We then
hoose a register r with maximum savings (whi
h must ex
eed 0), and

generate a family of fun
tions Save

r

15

; : : : ;Save

r

9

;Save

r

ra

that save the
allee-saved

registers and the return address register, and then return via register r. The idea

is that fun
tion Save

r

i

saves register i and then falls through to fun
tion Save

r

i�1

.

As an example, suppose we have two fun
tions f0() and f1(), su
h that f0()

saves registers r9, . . . , r14, and f1() saves only register r9. Assume that register

r0 is free at entry to both these fun
tions and is
hosen as the return address

register. The
ode resulting from the transformation des
ribed above is shown in

Figure 5.

It may turn out that the fun
tions subje
ted to this transformation do not use

all of the
allee-saved registers. For example, in Figure 5, suppose that none of the

fun
tions using return address register r0 save register r15. In this
ase, the
ode

for the fun
tion Save

0

15

be
omes unrea
hable and is subsequently eliminated.

6

Tru64 Unix was formerly known as Digital Unix.

18 � Saumya Debray et al.

Save0
15

Save0
14

Save0
9

Save0
ra

Save0
14

sp = sp - 32
bsr r0, Save0

9

. . .

f0:

bsr r0,
sp = sp - 40

f1:

stq r15, 0x38(sp)

stq r14, 0x30(sp)

stq r9, 0x8(sp)

stq ra, 0x0(sp)
ret (r0)

Fig. 5. Example
ode from abstra
tion of register save a
tions from fun
tion prologs.

A parti
ular
hoi
e of return address register, as des
ribed above, may not a
-

ount for all of the fun
tions in a program. The pro
ess is therefore repeated,

using other
hoi
es of return address registers, until either no further bene�t
an

be obtained, or all fun
tions are a

ounted for.

3.5.2 Abstra
ting Register Restores. The
ode for abstra
ting out register re-

store sequen
es in fun
tion epilogs is
on
eptually analogous to that des
ribed

above, but with a few di�eren
es. If we were simply to do the opposite of what

was done for register saves in fun
tion prologs, the
ode resulting from pro
edural

abstra
tion at ea
h return blo
k for a fun
tion might have the following stru
ture,

with three instru
tions to manage the
ontrol transfers and sta
k pointer update:

...

bsr r1, Restore /*
all fun
tion that restores registers */

sp = sp + k /* deallo
ate sta
k frame */

ret (ra) /* return */

If we
ould somehow move the instru
tion for deallo
ating the sta
k frame into

the fun
tion that restores saved registers, there would be no need to return to the

fun
tion f whose epilog we are abstra
ting:
ontrol
ould return dire
tly to f 's

aller (in e�e
t realizing tail
all optimization). The problem is that the
ode to

restore saved registers is used by many di�erent fun
tions, whi
h in general have

sta
k frames of di�erent sizes, and hen
e need to adjust the sta
k pointer by di�erent

amounts. The solution to this problem is to pass, as an argument to the fun
tion

that restores registers, the amount by whi
h the sta
k pointer must be adjusted.

Sin
e the return address register ra is guaranteed to be free at this point|it is

about to be overwritten with f 's return address prior to returning
ontrol to f 's

aller|it
an be used to pass this argument.

7

Sin
e there is now no need for
ontrol

to return to f after the registers have been restored|it
an return dire
tly to f 's

aller|we
an simply jump from fun
tion f to the fun
tion that restores registers,

instead of using a fun
tion
all. The resulting
ode requires two instru
tions instead

of three in ea
h fun
tion return blo
k:

7

In pra
ti
e not all fun
tions
an be guaranteed to follow the standard
alling
onvention, so it is

ne
essary to verify that register ra is, in fa
t, being used as the return address register by f .

Compiler Te
hniques for Code Compa
tion � 19

to f0’s caller(s) to ’s caller(s)f1

. . .

15

14

9

ra

ldq r15, 0x38(sp)

ldq r14, 0x30(sp)

ldq r9, 0x8(sp)

Restore

Restore

Restore

Restore

ra = 32 ra = 40
f0: f1:

sp = sp + ra
stq ra, 0x8(sp)
ldq ra, 0(sp)
ldq sp, 0x8(sp)
ret (ra)

Fig. 6. Example
ode from abstra
tion of register restore a
tions from fun
tion epilogs.

ra = k /* sp needs to be adjusted by k */

br Restore /* jump to fun
tion that restores registers */

The
ode in the fun
tion that restores registers is pretty mu
h what one would

expe
t. Unlike the situation for register save sequen
es dis
ussed in Se
tion 3.5.1,

we need only one fun
tion for restoring registers. The reason for this is that there is

no need to
all this fun
tion:
ontrol
an jump into it dire
tly, as dis
ussed above.

This means that we do not have to generate di�erent versions of the fun
tion with

di�erent return address registers. The overall stru
ture of the
ode is analogous to

that for saving registers: there is a
hain of basi
 blo
ks, ea
h of whi
h restores a

allee-saved register, with
ontrol falling through into the next blo
k, whi
h saves

the next (lower-numbered)
allee-saved register, and so on. The last member of

this
hain adjusts the sta
k pointer appropriately, loads the return address into a

register, and returns. There is, however, one minor twist at the end. The amount

by whi
h the sta
k pointer must be adjusted is passed in register ra, so this register

annot be overwritten until after it has been used to adjust the sta
k pointer. On

the other hand, sin
e the memory lo
ation from whi
h f 's memory address is to

be restored is in f 's sta
k frame, we
annot adjust the sta
k pointer until after the

return address has been loaded into ra. At �rst glan
e, it seems that the problem

an be addressed using something like the following instru
tion sequen
e:

sp = sp + ra /* sp = sp + ra � new sp */

ra = sp - ra /* ra = sp - ra � old sp */

ra = load 0(ra) /* ra = return address */

ret (ra)

This
ode is in
orre
t, however, be
ause the sta
k pointer is updated|i.e., the sta
k

frame is deallo
ated|before the return address is loaded from the sta
k frame. As

a result, if an interrupt o

urs between the end of the �rst instru
tion and the

beginning of the third instru
tion, the return address may be overwritten, resulting

in in
orre
t behavior. To avoid this, we have to ensure that the sta
k pointer update

is the last instru
tion before the ret instru
tion. We do this by �rst
omputing the

new value of the sta
k pointer and storing it in the sta
k frame (in the slot where the

�rst
allee-saved register, was originally stored), then updating the return address

20 � Saumya Debray et al.

register, and �nally loading the new value of the sta
k pointer from memory:

8

ra = sp + ra /* ra = sp + ra � new sp */

8(sp) = store ra /* new sp saved at lo
ation 8(sp) */

ra = load 0(sp) /* ra = return address */

sp = load 8(sp) /* sp = new sp */

ret (ra)

The resulting
ode for restoring saved registers, for the fun
tions
onsidered in the

example illustrated in Figure 5, is shown in Figure 6.

We go through these
ontortions in order to minimize the number of registers

used. If we
ould �nd another register that is free at the end of every fun
tion, we

ould load the return address into this register, resulting in somewhat simpler
ode.

However, in general it is not easy to �nd a register that is free at the end of every

fun
tion. The reason we go to su
h lengths to eliminate a single instru
tion from

ea
h return blo
k is that there are a lot of return blo
ks in the input programs,

typi
ally amounting to about 3%{7% of the basi
 blo
ks in a program, ex
luding

return blo
ks for leaf routines that do not allo
ate/deallo
ate a sta
k frame (there

is usually at least one|and, very often, more than one|su
h blo
k for ea
h fun
-

tion). The elimination of one instru
tion from ea
h su
h blo
k translates to a
ode

size redu
tion of about 1%{2% overall. (This may seem small, but to put it in per-

spe
tive,
onsider that Cooper and M
Intosh report an overall
ode size redu
tion

of about 5% using suÆx-tree-based te
hniques.)

3.6 Abstra
ting Partially Mat
hed Blo
ks

As dis
ussed in the pre
eding se
tions, the smallest
ode unit
onsidered for pro-

edural abstra
tion by squeeze is the basi
 blo
k. In other words, squeeze will not

attempt to
arry out any form of pro
edural abstra
tion on two blo
ks that are

not the same, even though there may be a signi�
ant amount of \partial mat
h"

between them, i.e., the blo
ks may share
ommon subsequen
es of instru
tions.

This is illustrated by the pair of basi
 blo
ks shown in Figure 7(a), with mat
hed

instru
tions indi
ated by lines drawn between them. Our experiments, des
ribed in

this se
tion, indi
ate that abstra
tion of partially mat
hed blo
ks is
omputation-

ally quite expensive but adds very little additional savings in
ode size. For this

reason we have
hosen not to in
lude partial mat
hing within squeeze.

There are two issues that have to be addressed when
onsidering pro
edural ab-

stra
tion of partially mat
hed blo
ks: �rst, how to identify partially mat
hed blo
ks

to abstra
t; and se
ond, how to transform the
ode to e�e
t this abstra
tion. In

our experiments, abstra
tion of partially mat
hed blo
ks was
arried out after pro-

edural abstra
tion of \fully mat
hed" blo
ks, dis
ussed in Se
tion 3.3. In general,

a parti
ular basi
 blo
k B

0

may be partially mat
hed against many di�erent blo
ks,

whi
h may mat
h di�erent subsequen
es of its instru
tions. The savings obtained

from pro
edural abstra
tion in this
ase depends on the blo
k B

1

that is
hosen as a

mat
h. On
e a blo
k B

1

is partially mat
hed with B

0

and subje
ted to pro
edural

abstra
tion, B

1

is not available for partial mat
hing against other basi
 blo
ks. This

8

We are indebted to Anders Lindgren for pointing out the problem in our original
ode, as well

as suggesting the solution shown.

Compiler Te
hniques for Code Compa
tion � 21

r1 = r2+1

r1 = r1+r3

ld r2, 0(r2)

r3 = r1+8

r4 = r0+4

r1 = r4+r2

st r1, 12(sp)

r1 = r2+1

r1 = r1+r3

st r1, 16(r0)

r3 = r1+8

ld r7, 8(sp)

r2 = r7*r3

r1 = r4+r2

st r1, 12(sp)

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

(a) A pair of partially mat
hed blo
ks.

ld r2, 0(r2)
B1

st r1, 16(r0)

r4 = r0+4 ld r7, 8(sp)
r2 = r7*r3

r1 = r2+1
r1 = r1+r3

r3 = r1+8

st r1, 12(sp)
r1 = r4+r2

B0

B2

B3

B4 B5

B6

return

ld r2, 0(r2)
B1

r3 = r1+8
r4 = r0+4

r1 = r2+1
r1 = r1+r3

B0

B2
st r1, 16(r0)
r3 = r1+8
ld r7, 8(sp)
r2 = r7*r3

st r1, 12(sp)
r1 = r4+r2

B6

return

(b) Pro
edure obtained from the maximal

mat
hing

(
) Pro
edure obtained after unmat
hing

unpro�table instru
tions

Fig. 7. Pro
edural abstra
tion of partially mat
hed blo
ks.

means that even though, from B

0

's perspe
tive, B

1

may yield the largest savings

when pro
edural abstra
tion is
arried out, this may not be the best
hoi
e globally,

sin
e we may have obtained greater savings by mat
hing B

1

with some other blo
k.

The problem of
omputing a globally optimal set of partial mat
hes for a set of

basi
 blo
ks, i.e., one that maximizes the savings obtained from their pro
edural

abstra
tion, is
omputationally diÆ
ult (the related longest
ommon subsequen
e

problem is NP-
omplete [Garey and Johnson 1979℄). We therefore take a greedy

approa
h, pro
essing basi
 blo
ks in de
reasing order of size. When pro
essing a

blo
k B

0

, we
ompare it against all other blo
ks and
hoose a blo
k B

1

that yields

maximal savings (
omputed as dis
ussed below) when pro
edural abstra
tion is

arried out based on partial mat
hing of B

0

and B

1

: B

1

is then put into a partition

asso
iated with B

0

. When all blo
ks have been pro
essed in this manner, all of the

blo
ks in the same partition are abstra
ted into a single pro
edure.

The bene�t obtained from the pro
edural abstra
tion of two partially mat
hed

blo
ks B

0

and B

1

is determined as follows. First, we use dynami
 programming to

determine the minimum edit distan
e between the two blo
ks, and thus the best

22 � Saumya Debray et al.

mat
h between them. Now
onsider the se
ond issue mentioned above, namely,

arrying out the program transformation. Sin
e we have a partial mat
h between

these blo
ks, there will have to be multiple exe
ution paths through the resulting

pro
edure, su
h that the
all from B

0

will take one path while that from B

1

will

take another. We
an do this by passing an argument to the abstra
ted pro
edure

indi
ating, for any
all, whi
h
all site it originated from, and therefore whi
h

instru
tions it should exe
ute. When s
anning down blo
ks B

0

and B

1

, whenever

we �nd a mismat
hed sequen
e of instru
tions in either blo
k, we generate
ode

in the abstra
ted pro
edure to test this argument and exe
ute the appropriate

instru
tion sequen
e based on the out
ome. Figure 7(b) shows the
ontrol
ow

graph of the resulting pro
edure. In addition to the instru
tions shown, we also

have to manage
ontrol
ow. For this, we need a
onditional bran
h at the end of

blo
ks B0 and B3 (in general, if there are more than two blo
ks in the partition

being abstra
ted, we may need expli
it
omparison operations to determine whi
h

of a set of alternatives to exe
ute), and an un
onditional bran
h for ea
h of the

pairs of blo
ks fB1, B2g and fB4, B5g, for a total of 15 instru
tions. Noti
e

that by designating the instru
tion in blo
k B3 as a \mat
h" between the two

original blo
ks, and thereby having B3 be
ommon to the exe
ution paths for both

of the
all sites of the pro
edure, we save a single
opy of this instru
tion, but

pay a penalty of two bran
h instru
tions for managing
ontrol
ow around it. In

this
ase, it turns out to be better, when determining the original partial mat
h,

to ignore the fa
t that the two r3 = r1+8 instru
tions
an be mat
hed. This

would yield the
ode shown in Figure 7(
), with a total of 14 instru
tions. On the

other hand, if instead of the single mat
hed instru
tion in B3 we had a sequen
e

of, say, 10 mat
hed instru
tions, the savings in
urred from
ombining them into

a single blo
k within the abstra
ted pro
edure would outweigh the
ost of the

additional instru
tions needed to manage
ontrol
ow. As this example illustrates,

the minimal edit distan
e between the two blo
ks does not ne
essarily yield the

greatest savings: sometimes we
an do better by ignoring some mat
hes. It is not

obvious that the dynami
 programming algorithm for
omputing minimum edit

distan
e
an be modi�ed in a straightforward way to a

ommodate this. Instead

we use a postpro
essing phase to \unmat
h" instru
tions that in
ur too great a

ontrol
ow penalty.

Even with the improvement of unmat
hing instru
tions where a mat
h is not

deemed pro�table, the
ost of
ontrol
ow management signi�
antly lowers the

overall bene�ts of pro
edural abstra
tion based on partial mat
hes. In the example

shown in Figure 7, for example, at ea
h
all site for the resulting pro
edure we

would need two additional instru
tions|one to set the argument register identifying

the
all site, another to
arry out the
ontrol transfer|for an overall total of 18

instru
tions. By
ontrast, the two original basi
 blo
ks shown in Figure 7(a)
ontain

a total of 15 instru
tions. Thus, despite the signi�
ant partial mat
h between these

two blo
ks, it is not pro�table in this
ase to abstra
t them out into a pro
edure.

In general, we found that pro
edural abstra
tion based on partial mat
hes in
urs a

large
omputational
ost, but yields overall
ode size savings of around 0.4{0.6%.

We obtained similar results with a number of other variations on this s
heme,

su
h as fa
toring out only
ommon suÆxes or pre�xes of blo
ks. Be
ause of the

high
omputational
ost of this transformation and the low bene�t it produ
es, we

Compiler Te
hniques for Code Compa
tion � 23

de
ided not to in
lude it within squeeze.

4. INTERACTIONS BETWEEN CLASSICAL OPTIMIZATIONS AND CODE FAC-

TORING

There is
onsiderable eviden
e that (appropriately
ontrolled) optimization
an

yield signi�
ant redu
tions in
ode size. Compiler \folklore" has it that some

amount of peephole optimization
an speed up the overall
ompilation pro
ess be-

ause of the resulting redu
tion in the number of instru
tions that have to be pro-

essed by later phases.

9

Cooper and M
Intosh [1999℄ observe
ode size redu
tions

of about 18% due to
ompiler optimizations, while our own experiments, dis
ussed

in Se
tion 5, indi
ate that enabling optimizations that do not in
rease
ode size

yield a
ode size redu
tion of about 20% on the average.

However, sin
e
lassi
al
ompiler optimizations are aimed primarily at in
reas-

ing exe
ution speed, the redu
tions in size they produ
e are, in many
ases, the

happy but
oin
idental out
ome of transformations whose primary goal is a redu
-

tion in exe
ution time. Examples of transformations that
an, in some situations,

lead to an in
rease in
ode size in
lude ma
hine-independent optimizations su
h as

partial-redundan
y elimination, pro
edure inlining, and shrink wrapping, as well

as ma
hine-dependent optimizations su
h as instru
tion s
heduling and instru
tion

a
he optimization, both of whi
h
an result in the insertion of no-ops for align-

ment purposes. Even for transformations that lead to
ode size redu
tions, using

exe
ution speed improvement as the primary goal of optimization
an yield smaller

size redu
tions than might be possible otherwise. For example, in the lo
al fa
tor-

ing transformation dis
ussed in Se
tion 3.1, if an instru
tion
an be hoisted either

upward or downward, it is preferable to hoist it downward, sin
e this
an yield

greater size redu
tions. However, if our primary goal is in
reasing exe
ution speed,

we would prefer to hoist it upward instead, so as to hide laten
ies.

This dis
ussion does not take into a

ount intera
tions between
lassi
al opti-

mizations, whose primary goal is a redu
tion in exe
ution time, and
ode-fa
toring

transformations, whose primary goal is a redu
tion in
ode size. As a simple exam-

ple,
onsider the
ode sequen
es in the following two basi
 blo
ks:

Blo
k B

1

Blo
k B

2

load r1, 8(sp) load r1, 8(sp)

add r1, r2, r3 add r1, r2, r3

load r1, 12(sp) (*)

add r4, r5, r6 add r4, r5, r6

add r1, r4, r1 (*)

mul r3, r6, r3 mul r3, r6, r3

add r3, r5, r3 add r3, r5, r3

store r3, 16(sp) store r3, 16(sp)

As presented, these two blo
ks are di�erent, and
annot be subje
ted to pro
edu-

ral abstra
tion into the same pro
edure. If the
ompiler determines that the two

instru
tions in blo
k B

2

marked as (*) are dead (e.g., due to
ode-eliminating op-

timizations elsewhere that
ause r1 to be
ome dead at the end of blo
k B

2

), and

eliminates them, the two blo
ks then be
ome identi
al and
an be fa
tored out into

9

We believe this observation is due to W. A. Wulf.

24 � Saumya Debray et al.

a pro
edure. However, if the
ompiler does an even better job of optimization,

and is able to �nd a free register in blo
k B

1

that allows it to eliminate the load

instru
tion in that blo
k, the two blo
ks again be
ome di�erent and
annot be ab-

stra
ted into a pro
edure. Noti
e that in the latter
ase, the
ompiler's de
ision

to eliminate the load instru
tion is a lo
ally good de
ision|it redu
es
ode size by

one instru
tion and is likely to improve speed|but, from the standpoint of
ode

ompa
tion, not su
h a good de
ision globally.

Intera
tions su
h as these give rise to a phase-ordering problem between size-

oriented and speed-oriented transformations. One possible way to deal with this

would be to iterate the transformations to a �xpoint. However, this is not a sat-

isfa
tory solution, be
ause transformations su
h as
ode fa
toring require a lot of

ode sequen
e
omparisons to identify repeated instru
tion sequen
es that
an be

fa
tored out, and therefore are quite expensive; iterating over them is likely to be

so expensive as to be impra
ti
al. We
urrently do not do perform su
h iteration.

5. EXPERIMENTAL RESULTS

To evaluate our ideas, we used the eight SPEC-95 integer ben
hmarks, as

well as six embedded appli
ations, adp
m, epi
, gsm, mpeg2de
, mpeg2en
,

and rasta, obtained from the MediaBen
h ben
hmark suite from UCLA

(http://www.
s.u
la.edu/~lee
/mediaben
h). We evaluated squeeze on
ode

obtained from two di�erent C
ompilers: the vendor-supplied C
ompiler

 V5.2-

036, invoked as

 -O1, and the GNU C
ompiler g

 version 2.7.2.2, at optimization

level -O2. The programs were
ompiled with additional
ags instru
ting the linker

to retain relo
ation information and to produ
e stati
ally linked exe
utables.

10

The

optimization level
hosen for ea
h
ompiler was sele
ted to allow \standard" op-

timizations ex
ept for those, su
h as pro
edure inlining and loop unrolling, that

an in
rease
ode size. At optimization level -O1, the vendor-supplied
ompiler

arries out lo
al optimizations and re
ognition of
ommon subexpressions; global

optimizations in
luding
ode motion, strength redu
tion, and test repla
ement; split

lifetime analysis; and
ode s
heduling; but not size-in
reasing optimizations su
h as

inlining; integer multipli
ation and division expansion using shifts; loop unrolling;

and
ode repli
ation to eliminate bran
hes. Similarly, at the -O2 level of optimiza-

tion, the g

ompiler
arries out most supported optimizations that do not involve

a spa
e-speed trade-o�. In parti
ular, loop unrolling and fun
tion inlining are not

arried out.

The baseline for our measurements is
ode optimized by the
ompiler as dis-

ussed above, but with unrea
hable
ode and no-ops removed and pro�le-guided

ode layout|whi
h
an improve performan
e signi�
antly, but is not
arried out

by either of the
ompilers we used for our experiments|
arried out. This elimi-

nates library routines that are not referen
ed by the program but whi
h get linked

into the program be
ause of referen
es to other routines in the library, and ex-

ludes size redu
tions that
ould be trivially obtained by a traditional
ompiler.

We in
lude pro�le-dire
ted
ode layout in the baseline to allow a fair
omparison:

10

The requirement for stati
ally linked exe
utables is a result of the fa
t that squeeze relies on the

presen
e of relo
ation information for its
ontrol
ow analysis. The Tru64 Unix linker ld refuses

to retain relo
ation information for exe
utables that are not stati
ally linked.

Compiler Te
hniques for Code Compa
tion � 25

Table I. Code Size Improvements Due To Di�erent Transformations

Transformation Savings (%)

redundant
omputation elimination 34.14

Basi
 blo
k and region abstra
tion 27.42

Useless
ode elimination 22.43

Register save/restore abstra
tion 9.95

Other inter-pro
edural optimizations 6.06

squeeze
arries out this optimization, and we do not want the resulting performan
e

improvements to unduly in
ate the exe
ution speed of the resulting exe
utables.

To obtain instru
tion
ounts, we �rst disassemble the exe
utable �les and dis
ard

unrea
hable
ode and no-op instru
tions. This eliminates library routines that are

linked in but are not a
tually
alled, as well as any no-op instru
tions that may have

been inserted by the
ompiler for instru
tion s
heduling or alignment purposes. To

identify unrea
hable
ode, we
onstru
t a
ontrol
ow graph for the entire program

and then
arry out a rea
hability analysis. In the
ourse of
onstru
ting the
ontrol

ow graph, we dis
ard un
onditional bran
hes. We reinsert those that are ne
essary

after all the
ode transformations have been
arried out: during
ode layout, just

before the transformed
ode is written out. To get a

urate
ounts, therefore, we

generate the �nal
ode layout in ea
h
ase (i.e., with and without
ompa
tion) and

ount the total number of instru
tions.

5.1 Code Size

The overall
ode size redu
tions a
hieved using our te
hniques are summarized in

Figure 8. The
orresponding raw data are given in Debray et al. [2000℄. Figure

8(a) shows the e�e
ts of squeeze on
ode
ompiled using the vendor-supplied C

ompiler

, while Figure 8(b) shows the e�e
ts of squeeze on
ode
ompiled using

the GNU C
ompiler g

. The
olumns labeled \Unoptimized" refer to programs

ompiled at optimization level -O0, where no optimization is
arried out, and serve

as a referen
e point to indi
ate how mu
h
ode size redu
tion is realized using only

optimizations
arried out by the
ompiler, while the
olumns labeled \Base" refer to

ode optimized at the appropriate level, as dis
ussed above, with unrea
hable
ode

and no-ops removed. It
an be seen from Figure 8 that by using
lassi
al
ompiler

optimizations, ea
h of these
ompilers is able to a
hieve signi�
ant improvements

in
ode size
ompared to the unoptimized
ode:

 obtains a size redu
tion of just

over 10% on the average, while g

 is able to a
hieve an average size redu
tion

of about 20%. More importantly, however, it
an be seen that, even when given

the already optimized exe
utables as input, squeeze is able to a
hieve signi�
ant

further redu
tions in size. For the

-
ompiled programs it a
hieves an average size

redu
tion of just over 30%, while for the g

-
ompiled programs the average size

redu
tion is a little over 28%. The greatest redu
tion in size is about 40% for the

adp
m program, while the smallest is about 15{17% for the go program.

Table I gives a breakdown of the average
ontribution of di�erent kinds of
ode

transformations toward the
ode size redu
tions we a
hieve. Four
lasses of transfor-

mations a

ount for most of these savings. About a third of the savings
omes from

26 � Saumya Debray et al.

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 c

od
e

si
ze

Unoptimized
Base
Squeezed

(a) Compiler:

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 c
od

e
si

ze

Unoptimized
Base
Squeezed

(b) Compiler: g

Fig. 8. E�e
ts of
ompa
tion on
ode size (normalized).

the elimination of redundant
omputations of the global pointer register gp; about

27%
omes from \ordinary" pro
edural abstra
tion; ar
hite
ture-spe
i�
 abstra
-

tion of register save/restore sequen
es a

ounts for another 10%; and useless-
ode

elimination a

ounts for about 22% of the savings. (Re
all that our baseline pro-

grams have already had unrea
hable
ode and no-ops removed. The �gure given

here refers to
ode that subsequently be
omes useless, due to interpro
edural opti-

mization, as dis
ussed in Se
tion 2.1.) The remainder of the savings arise due to a

variety of interpro
edural optimizations.

We also measured the extent to whi
h basi
 blo
ks of di�erent sizes
ontribute

to the overall savings due to pro
edural abstra
tion. For small basi
 blo
ks, the

savings per blo
k abstra
ted tend to be small, but the likelihood of �nding other

similar blo
ks, and thereby in
reasing the total resulting savings, is large. The

Compiler Te
hniques for Code Compa
tion � 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16+
0.0

5.0

10.0

15.0

20.0

Sa
vi

ng
s

(%
)

0.0

5.0

10.0

15.0

20.0

Sa
vi

ng
s

(%
)

Basic block size

Fig. 9. Contribution to pro
edural abstra
tion savings for basi
 blo
ks of di�erent sizes.

opposite is true for large blo
ks: ea
h basi
 blo
k that is abstra
ted a

rues a

signi�
ant savings, but the likelihood of �nding similar or identi
al blo
ks that
an

be abstra
ted is not as high. The distribution of the average savings we observed

for our ben
hmarks is shown in Figure 9. It
an be seen that small blo
ks a

ount

for a signi�
ant amount of the savings: about 7% of the savings
omes from blo
ks

ontaining just two instru
tions, while
lose to 15%
omes from blo
ks
ontaining

three instru
tions. Beyond this the savings generally drop o� as the number of

instru
tions in
reases, ex
ept for a large bump at basi
 blo
ks of size 10. The reason

for this, it turns out, is that very often there is a large number of return blo
ks that

restore all the
allee-saved registers and the return address register from memory,

deallo
ate the sta
k frame, and then return from the fun
tion. These a
tions require

10 instru
tions on the pro
essor we used. The
ontribution of large basi
 blo
ks|

those ex
eeding 12 instru
tions in length|is, on the average, quite small, even

though o

asionally we are able to abstra
t blo
ks that are quite long. (In the g

and vortex ben
hmarks, basi
 blo
ks of up to 25 instru
tions are abstra
ted. In the

rasta ben
hmark, su
h blo
ks
an be up to 44 instru
tions long.)

As mentioned earlier, our experiments use stati
ally linked exe
utables, where

the
ode for the library routines is linked into the exe
utable by the linker prior to

ompa
tion. It is possible that library
ode is more (or less)
ompressible than user

ode. This
ould happen, for example, if the libraries are
ompiled using di�erent

ompilers or
ompiler optimization levels. It is desirable to identify, therefore, the

extent to whi
h the presen
e of library
ode in
uen
es our results. For example, if

it turns out that library
ode is highly
ompressible while user
ode is not, then our

results would not be readily appli
able to exe
utables that are not stati
ally linked.

To this end, we instrumented squeeze to re
ord, for ea
h addition or deletion of
ode

during its run, the fun
tion(s) with whi
h the size
hange should be asso
iated. For

the
lassi
al optimizations implemented within squeeze, this is straightforward. For

pro
edural abstra
tion, we use the following approa
h. Suppose that n di�erent

instan
es of a parti
ular
ode fragment were abstra
ted into a pro
edure, resulting

in a net savings in
ode size of m, then the fun
tion
ontaining ea
h of these in-

stan
es is
redited with a savings of m=n instru
tions (not ne
essarily an integral

quantity). We then use a list of fun
tions in the user
ode, obtained using a modi-

28 � Saumya Debray et al.

compress gcc go
ijpeg li

m88ksim perl
vortex

adpcm gsm

mpeg2dec

mpeg2enc
rasta

0.0

10.0

20.0

30.0

40.0

50.0

C
od

e
si

ze
 r

ed
uc

ti
on

 (
%

)

0.0

10.0

20.0

30.0

40.0

50.0

C
od

e
si

ze
 r

ed
uc

ti
on

 (
%

)

User code

Libraries

Fig. 10. Contributions to
ode size redu
tion: User
ode versus libraries.

�ed version of the l

ompiler [Fraser and Hanson 1995℄, to estimate the total size

of user
ode and the
ode savings attributable to it. These measurements do not

a

ount for indire
t e�e
ts of having the library
ode available for inspe
tion, su
h

as improved pre
ision of data
ow analyses, whi
h may give rise to additional op-

portunities for optimization. Nevertheless, this information is useful for obtaining

qualitative estimates of the in
uen
e of library
ode on our overall numbers. Our

results are shown in Figure 10. The bars labeled \User
ode" represent the fra
tion

of instru
tions in user
ode, relative to the total number of user
ode instru
tions,

that were deleted in the pro
ess of
ode
ompa
tion, while those labeled \Libraries"

give the
orresponding �gures for library
ode. For both the user
ode and libraries,

the amount of redu
tion in
ode size typi
ally ranges from around 25% to around

30%, with an average redu
tion of about 27% for user
ode and about 26% for

library
ode.

11

There are a few programs (li, perl, vortex, adp
m) where the user

ode is noti
eably more
ompressible than the libraries, and a few others (go, gsm,

rasta) where the libraries are more
ompressible. In general, however, the user and

library
ode are more or less
omparable in their
ontribution to the overall
ode

size redu
tion measured.

5.2 Code Speed

One intuitively expe
ts the programs resulting from the
ode
ompa
tion te
hniques

des
ribed here to be slower than the original
ode, primarily be
ause of the addi-

tional fun
tion
alls resulting from the pro
edural abstra
tion that o

urs. A more

areful
onsideration indi
ates that the situation may be murkier than this simple

analysis suggests, for a number of reasons. First, mu
h of the
ode size redu
tion is

due to aggressive interpro
edural optimizations that also improve exe
ution speed.

Se
ond, transformations su
h as pro�le-dire
ted
ode layout, whi
h need not have a

large e�e
t on
ode size,
an nevertheless have a signi�
ant positive e�e
t on speed.

On the other hand, on a supers
alar pro
essor su
h as the Alpha 21164, slow-downs

an o

ur in the
ompressed
ode for reasons other than pro
edural abstra
tion,

e.g., due to the elimination of no-ops inserted by the instru
tion s
heduler in order

11

These numbers refer to the
ontrol
ow graph prior to
ode layout, i.e., before un
onditional

bran
hes are added while linearizing the graph.

Compiler Te
hniques for Code Compa
tion � 29

to align the instru
tions so as to in
rease the number of instru
tions issued per

y
le.

To determine the a
tual e�e
t of our transformations on our ben
hmarks, we

ompared the exe
ution times of the original optimized exe
utables with those

resulting from the appli
ation of squeeze to these exe
utables. Exe
ution pro�les,

in the form of basi
 blo
k exe
ution
ounts, were obtained for ea
h program using

pixie, and these were fed ba
k to squeeze during
ode
ompa
tion. The SPEC

ben
hmarks were pro�led using the SPEC training inputs and subsequently timed

on the SPEC referen
e inputs. For ea
h of the remaining ben
hmarks, we used the

same input for both pro�ling and subsequent timing. The timings were obtained on

a lightly loaded Compaq Alpha workstation with a 300-MHz Alpha 21164 pro
essor

with a split primary dire
t mapped
a
he (8 KB ea
h of instru
tion and data

a
he), 96 KB of on-
hip se
ondary
a
he, 2 MB of o�-
hip se
ondary
a
he, and

512 Mbytes of main memory, running Tru64 Unix 4.0. Our results are shown

in Figure 11. The
orresponding raw data are given in Debray et al. [2000℄. In

ea
h
ase, the exe
ution time was measured as the smallest time of 10 runs. The

olumns labeled \Original" refer to the exe
ution times of the inputs optimized

at the appropriate level for ea
h
ompiler, as dis
ussed earlier, but without the

elimination of unrea
hable
ode and no-ops. These are provided as a referen
e

point. The
olumns labeled \Base" refer to exe
utables obtained by removing

unrea
hable
ode and no-ops from the original exe
utables and then performing

pro�le-dire
ted
ode layout. The exe
ution times of the exe
utables produ
ed by

squeeze
orrespond to the
olumns labeled \Squeezed."

The results of our timing experiments indi
ate that it is by no means a foregone

on
lusion that squeezed
ode will be slower than original
ode. For many of our

ben
hmarks, the squeezed
ode runs signi�
antly faster than the original. For

example, for the
ompress ben
hmark
ompiled using

, the squeezed exe
utable

is about 11% faster than the base and original exe
utables, and using g

, it is

about 23% faster than the base and original exe
utables. For m88ksim
ompiled

using

, the squeezed exe
utable is about 35% faster than the base and about

36% faster than the original, and using g

, it is about 30% faster than both the

base and original. For perl
ompiled using

, it is about 28% faster than the base

and about 22% faster than the original, and using g

, it is about 13% faster than

the base and original. Only two programs su�er slow-downs as a result of
ode

ompa
tion: vortex and epi
, both under the g

ompiler. The former slows down

by about 10%, the latter by about 23%. The reasons for these slow-downs are

dis
ussed in Se
tion 5.3. Overall, for the set of ben
hmarks
onsidered, the average

speedup,
ompared to both the base and original programs, is about 16% for the

-
ompiled exe
utables and about 10% for the exe
utables obtained using g

. In

other words,
ode
ompa
tion yields signi�
ant speed improvements overall, and

the
ompressed
ode performs favorably even when the performan
e of the original

ode is enhan
ed via pro�le-guided
ode layout. The reasons for this, explored

in Se
tion 5.3, are generally that for most of our ben
hmarks, the squeezed
ode

experien
es signi�
ant de
reases in the number of instru
tion
a
he misses and the

average amount of instru
tion-level parallelism that
an be sustained.

30 � Saumya Debray et al.

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Original
Base
Squeezed

(a) Compiler:

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Original
Base
Squeezed

(b) Compiler: g

Fig. 11. E�e
ts of
ompa
tion on exe
ution time (normalized).

5.3 Low-Level Dynami
 Behavior

To better understand the dynami
 behavior of programs subje
ted to
ode
om-

pa
tion, we examined various aspe
ts of their low-level exe
ution
hara
teristi
s.

Our results, whi
h are summarized in Figure 12, were obtained using hardware

ounters on the pro
essor, in ea
h
ase using the smallest of three runs of the

program.

5.3.1 Total Instru
tions Exe
uted. Code size redu
tions during
ode
ompa
tion

ome from two sour
es: interpro
edural optimization and
ode fa
toring. Some in-

terpro
edural optimizations redu
e the number of instru
tions exe
uted: for exam-

ple, the elimination of unne
essary gp register
omputations, elimination of no-ops

inserted for alignment and instru
tion s
heduling, dead-
ode elimination, and inlin-

ing of pro
edures
alled from a single
all site. Other optimizations, in parti
ular

the elimination of unrea
hable
ode, have no e�e
t on the number of instru
tions

exe
uted. Code fa
toring, on the other hand, leads to the exe
ution of additional

Compiler Te
hniques for Code Compa
tion � 31

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0
T

ot
al

 in
st

ru
ct

io
ns

 e
xe

cu
te

d

 {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

T
ot

al
 in

st
ru

ct
io

ns
 e

xe
cu

te
d

g

 {O2

(a) Instru
tions exe
uted (normalized)

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

1.0

2.0

3.0

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

 {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

1.0

2.0

3.0

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

g

 {O2

(b) Instru
tion
a
he misses (normalized)

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

 {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

1.5

In
st

ru
ct

io
ns

 p
er

 c
yc

le

g

 {O2

(
) Instru
tion-level parallelism

Original Base SqueezedKey:

Fig. 12. Low-level dynami
 behavior.

bran
h instru
tions for the pro
edure
alls and returns, and so always results in an

in
rease in the number of instru
tions exe
uted.

Figure 12(a) shows the relative number of instru
tions exe
uted by the original

and the squeezed programs,
ompared to the base program. As one might ex-

pe
t, sin
e the only di�eren
e between the original and base programs is that the

base program has had unrea
hable
ode and no-ops eliminated, the base program

always exe
utes fewer instru
tions than the original. Moreover, the di�eren
e be-

tween these|due entirely to eliminated no-ops|is typi
ally not large, ranging from

about 1% to 9% and averaging about 4%. More interestingly, when we
onsider the

ode generated by squeeze, we �nd that for many programs, the squeezed version

32 � Saumya Debray et al.

exe
utes fewer instru
tions than the base programs. For these programs, the re-

du
tion in instru
tions exe
uted resulting from optimizations by squeeze o�set any

dynami
 in
reases due to fa
toring. For other programs, the e�e
ts of
ode fa
tor-

ing outweigh those due to optimizations, and result in a net in
rease in the number

of instru
tions exe
uted. Overall, we �nd that for the ben
hmarks
onsidered, the

squeezed versions of the
ode obtained for

 exe
ute about 3% fewer instru
tions

on the average than the base versions, while for the g

-
ompiled binaries they

exe
ute a little over 3% more instru
tions, on the average.

5.3.2 Instru
tion Ca
he Misses. Sin
e modern CPUs are signi�
antly faster

than memory, delivering instru
tions to them is a major bottlene
k. A high instru
-

tion
a
he hit-rate is therefore essential for good performan
e. Primary instru
tion

a
hes, in order to be fast, tend to be relatively small and have low asso
iativity.

This makes it advantageous to lay out the basi
 blo
ks in a program in su
h a way

that frequently exe
uted blo
ks are positioned
lose to ea
h other, sin
e this is less

likely to lead to
a
he
on
i
ts [Pettis and Hansen 1990℄. However,
ode fa
toring

an undo the e�e
ts of pro�le-dire
ted
ode layout, by \pulling out" a
ode frag-

ment into a pro
edure that
annot be positioned
lose to its
all site. The problem

arises when, for example, we have two instan
es of a repeated
ode fragment that

are not
lose to ea
h other but where both
ode fragments are frequently exe
uted.

If these
ode fragments are fa
tored out into a pro
edure, there will be two fre-

quently exe
uted
all sites for the resulting pro
edure, and it may not be possible

to lay out the
ode in a way that positions the body of the pro
edure
lose to both

of these
all sites. This
an lead to an in
rease in instru
tion
a
he misses.

Figure 12(b) shows the e�e
t of
ode
ompa
tion on instru
tion
a
he misses. For

the

-
ompiled programs, the
ompress ben
hmark experien
es a large in
rease in

the number of instru
tion
a
he misses as a result of fa
toring. For the binaries

obtained from g

, two programs|ijpeg and vortex|su�er large in
reases in the

number of
a
he misses, while two others|g

 and go|experien
e smaller but

nevertheless noti
eable in
reases. The number of instru
tion
a
he misses goes

down for the remaining programs; in a few
ases|notably,
ompress, li, m88ksim,

epi
, and mpeg2de
|quite dramati
ally. Overall, the squeezed programs in
ur 36%

fewer instru
tion
a
he misses, on the average, for the

-
ompiled binaries, and 40%

fewer misses for the g

-
ompiled binaries, than the
orresponding base programs.

5.3.3 Instru
tion-Level Parallelism. The Alpha 21164 pro
essor, on whi
h our

experiments were run, is a supers
alar ma
hine that
an exe
ute up to four in-

stru
tions per
y
le, provided that various s
heduling
onstraints are satis�ed. For

example, at most two integer and two
oating-point instru
tions
an be issued in a

y
le; and no more than one instru
tion in a group of simultaneously issued instru
-

tions should try to a

ess memory or a

ess the same fun
tional unit. Instru
tions

are fet
hed in groups of four, and ea
h su
h group is then examined for opportuni-

ties for multiple issues by evaluating to what extent they satisfy these
onstraints.

This means that it is possible for a plausible
ode transformation, su
h as the dele-

tion of a no-op instru
tion, to alter the instru
tion sequen
e in su
h a way that

opportunities for multiple instru
tion issues are redu
ed dramati
ally, with a
orre-

sponding loss in performan
e (
onversely, the judi
ious insertion of no-ops
an lead

to an in
rease in the level of instru
tion-level parallelism that
an be exploited).

Compiler Te
hniques for Code Compa
tion � 33

To address this problem, squeeze
arries out instru
tion s
heduling after all other

transformations have been applied and the �nal
ode layout has been determined.

Sin
e squeeze eliminates no-ops inserted by the
ompiler for s
heduling and align-

ment purposes, there is the potential for a signi�
ant loss in instru
tion-level par-

allelism in the
ode it produ
es. To evaluate whether this is the
ase, we measured

the average number of instru
tions issued per
y
le for the various exe
utables. The

results are shown in Figure 12(
). It
an be seen that the elimination of no-ops

in
urs a pri
e in the base program, where the average number of instru
tions is-

sued per
y
le is slightly smaller (by about 1% for

 and 0.5% for g

) than the

original program. However, the instru
tion s
heduler in squeeze is able to over
ome

this problem and, for almost all of the programs tested, is able to attain a higher

number of instru
tions per
y
le. On the average, the instru
tions issued per
y
le

in the squeezed programs,
ompared to the base programs, improves by about 6%

for the

-
ompiled binaries and about 8% for the g

-
ompiled binaries.

5.3.4 Summary. As Figure 11 shows, two of the 14 ben
hmarks we used, vortex

and epi

ompiled under g

, su�er a slowdown as a result of
ode
ompa
tion.

Their low-level exe
ution
hara
teristi
s indi
ate the possible reasons for this. Like

many of the other programs,
ode
ompa
tion
auses an in
rease in the total num-

ber of instru
tions exe
uted for both of these programs. While the other programs

are generally able to
ompensate for this by improvements elsewhere, vortex su�ers

an in
rease in instru
tion
a
he misses, and epi
 su�ers a redu
tion in the average

number of instru
tions issued per
y
le. Some of the other programs in
ur degrada-

tions in some dynami
 exe
ution
hara
teristi
s but are able to
ompensate for this

with improvements in other
hara
teristi
s. For example,
ompress under

 and

ijpeg under g

, both of whi
h su�er dramati
 in
reases in the number of instru
tion

a
he misses, are nevertheless able to eke out overall improvements in speed due to

a
ombination of a redu
tion in the total number of instru
tions exe
uted and|for

ijpeg
ompiled with g

|an in
rease in the average number of instru
tions issued

per
y
le.

5.4 The E�e
ts of Code Fa
toring

Figure 13 shows the e�e
t of
ode fa
toring by itself on
ode size and exe
ution

time. The raw data are given in Debray et al. [2000℄. The graphs
ompare squeeze

performing all
ode transformations ex
ept for
ode fa
toring, against squeeze with

ode fa
toring enabled. It
an be seen that fa
toring redu
es the size of the programs

by about 5{6%. An interesting aspe
t of this
omparison is that the elimination

of
ode due to various optimizations within squeeze has the e�e
t of redu
ing the

apparent eÆ
a
y of
ode fa
toring, sin
e
ode that might otherwise have been

fa
tored is eliminated as useless or unrea
hable. The result of this is that the

greater the
ode-shrinking e�e
ts of
lassi
al optimizations, the smaller we �nd the

bene�ts due to fa
toring.

Sin
e the smallest
ode unit we
onsider for pro
edural abstra
tion is the basi

blo
k, our approa
h does not pi
k out and abstra
t instru
tion sequen
es that are

subparts of a blo
k. By
omparison, suÆx-tree based approa
hes su
h as those of

Cooper and M
Intosh [1999℄ are able to abstra
t out repeated-instru
tion sequen
es

that are subsequen
es of a blo
k. Despite this limitation in our approa
h to
ode

34 � Saumya Debray et al.

incompress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

 {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

g

 {O2

(a) Code size (normalized)

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

 {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

g

 {O2

(b) Exe
ution time (normalized)

without factoring with factoringKey:

Fig. 13. Relative impa
t of
ode fa
toring on
ode size and exe
ution time.

fa
toring, the relative size redu
tions we obtain via fa
toring are essentially the

same as those of Cooper and M
Intosh. A possible explanation for this is that

the ability to abstra
t out subsequen
es within a basi
 blo
k is likely to make a

di�eren
e only for large basi
 blo
ks, and the proportion of su
h blo
ks generally

tends to be small in most programs.

As one would expe
t, fa
toring
auses an in
rease in the number of instru
tions

exe
uted. On the average, this results in an in
rease in exe
ution time of about 4%

for the

-
ompiled binaries, and about 10% for the g

-
ompiled binaries. Some

g

-
ompiled binaries experien
e signi�
ant slow-downs, with vortex slowing down

by about 37%, epi
 by about 23%, and perl by about 18%.

6. CONCLUSIONS

This arti
le fo
uses on the problem of
ode
ompa
tion to yield smaller exe
uta-

bles. It des
ribes a \whole-system" approa
h to the problem, where the use of

aggressive interpro
edural optimization, together with pro
edural abstra
tion of

repeated-
ode fragments, yields signi�
antly greater redu
tions in
ode size than

have been a
hieved to date. For the identi�
ation and abstra
tion of repeated
ode

Compiler Te
hniques for Code Compa
tion � 35

fragments, it departs from
lassi
al suÆx-tree-based approa
hes. Instead, it uses

information already available in most
ompilers, su
h as the
ontrol
ow graph and

dominator/postdominator trees. Be
ause it does not treat the program as a simple

linear sequen
e of instru
tions, it
an be more
exible in its treatment of what
ode

fragments may be
onsidered \equivalent." This simpli�es the implementation and

sets up a framework for
ode
ompa
tion that
an be more
exible in its treatment

of what
ode fragments are
onsidered \equivalent." This results in a system that

is able to obtain
onsiderably greater
ompa
tion, even on optimized
ode, than

previous approa
hes, without in
urring signi�
ant performan
e penalties.

APPENDIX

A. THE LOCAL REGISTER-RENAMING ALGORITHM

Suppose we want to rename the registers in a basi
 blo
k B

from

, if possible, to make

it identi
al to a blo
k B

to

. Pseudo
ode for the algorithm used by squeeze for this is

shown in Figure 14. For simpli
ity of exposition, we assume that instru
tions are

of the form reg

3

= reg

1

op reg

2

. The ith operand of an instru
tion I is given by

I:Op[i℄. We assume that operands 1 and 2 are the sour
e operands, and operand

3 is the destination operand. In addition, ea
h instru
tion I has �elds I:oldOp[i℄

that are used to keep tra
k of the operand register before renaming. These �elds

are used to undo the renaming if ne
essary, and are all initialized to ?. The

algorithm maintains two global arrays, InSubst and OutSubst, that keep tra
k of

register moves that have to be inserted at the entry to and exit from the blo
k,

respe
tively, if the renaming is su

essful. Ea
h element of these arrays is initialized

to ?.

The main routine that
arries out the renaming is RenameBlo
k, illustrated in

Figure 14. The basi
 idea is to work through ea
h instru
tion in B

from

and try

to rename its operands to make it identi
al to the
orresponding instru
tion in

B

to

without violating any semanti

onstraints. If this
annot be done, or if the

total number of move instru
tions that must be inserted before and after the blo
k

ex
eeds the savings that would be obtained from pro
edural abstra
tion of the

blo
k, the renaming is abandoned. In this
ase,
ontrol is transferred to the label

bailout, where the renaming of ea
h instru
tion in the blo
k is undone.

The pseudo
ode for renaming individual operands is shown in Figure 15. The idea

is to re
ord the original value of the operand in the appropriate oldOp �eld of the

instru
tion being renamed, rename the operand, and then propagate this renaming

forward in the basi
 blo
k until the register that is being renamed be
omes rede�ned

or the end of the blo
k is rea
hed.

ACKNOWLEDGEMENTS

We are grateful to Anders Lindgren and Johan Runeson (IAR Systems, Sweden)

for pointing out some errors in an earlier version of this paper. Thanks are also due

to Nathaniel M
Intosh for helpful dis
ussions, and for pointing us to the UCLA

Mediaben
h ben
hmark programs. Comments by the anonymous reviewers were

very helpful in improving the
ontents of the arti
le.

36 � Saumya Debray et al.

fun
tion RenameBlo
k(B

from

, B

to

)

begin

if NumInstr(B

from

) 6= NumInstr(B

to

) return fail;

n := NumInstr(B

from

);

LiveIn := fr j r is live at entry to B

from

g;

LiveRegs := fr j r is live at entry to B

from

g;

NumMoves := 0;

SavedRegs := fr j r is a
allee-saved register that is saved by the fun
tion
ontaining B

from

g;

Forbidden := LiveRegs [fr j r is
allee-saved and r 62 SavedRegsg;

for i := 1 to n do

ins

from

:= B

from

[i℄ � `reg

from

3

= reg

from

1

op reg

from

2

';

ins

to

:= B

to

[i℄ � `reg

to

3

= reg

to

1

op reg

to

2

';

if (ins

from

6= ins

to

) then

for j 2 f1; 2g do

if reg

from

j

6= reg

to

j

and reg

from

j

2 LiveIn then

if (InSubst[reg

from

j

℄ 6= ?) goto bailout;

InSubst[reg

from

j

℄ := reg

to

j

;

NumMoves += 1;

�

if (Repla
eOp(j; ins

from

; ins

to

; LiveIn) = fail) goto bailout;

od

if the de�nition ins

from

rea
hes the end of B

from

then

if the de�nition ins

to

does not rea
h the end of B

to

goto bailout;

OutSubst[reg

from

3

℄ := reg

to

3

;

NumMoves += 1;

�

if (Repla
eOp(3; ins

from

; ins

to

;Forbidden) = fail) goto bailout;

if (ins

from

6= ins

to

) goto bailout;

LiveIn := LiveIn � freg

from

3

g;

LiveRegs := (LiveRegs � freg

from

3

g) [freg

to

3

g;

�

od

if (NumMoves + 1 < n) then /* the `+1' is for the bsr that will be added */

InsertMoves(B

from

; InSubst; OutSubst);

return su

ess;

�

bailout:

for i := 1 to n do

ins

from

:= B

from

[i℄;

if (ins

from

:oldOp[1℄ 6= ?) then ins

from

:Op[1℄ := ins

from

:oldOp[1℄;

if (ins

from

:oldOp[2℄ 6= ?) then ins

from

:Op[2℄ := ins

from

:oldOp[2℄;

if (ins

from

:oldOp[3℄ 6= ?) then ins

from

:Op[3℄ := ins

from

:oldOp[3℄;

od

return fail;

end

Fig. 14. Algorithm for lo
al register renaming.

Compiler Te
hniques for Code Compa
tion � 37

fun
tion Repla
eOp(k, ins

from

, ins

to

, Forbidden)

begin

r

from

:= ins

from

:Op[k℄;

r

to

:= ins

to

:Op[k℄;

if (r

from

= r

to

) return su

ess;

if (r

to

2 Forbidden) return fail;

ins

from

:oldOp[k℄ := r

from

;

ins

from

:Op[k℄ := r

to

;

for ea
h instru
tion I after ins

from

to the end of the blo
k do

for j 2 f1; 2g do

if (I:Op[j℄ = r

from

) then

if (I:oldOp[j℄ 6= ?) return fail;

I:oldOp[j℄ := r

from

;

I:Op[j℄ := r

to

;

�

od

if (I:Op[3℄ = r

from

) break;

od

return su

ess;

end

fun
tion InsertMoves(B

from

; InSubst; OutSubst)

begin

if 9r : InSubst[r℄ 6= ? then

if B

from

has multiple prede
essors then

reate a new basi
 blo
k B

0

and redire
t all edges entering B

from

to enter B

0

instead;

add an edge from B

0

to B

from

;

else

B

0

:= B

from

;

�

for ea
h r

0

= InSubst[r℄ s.t. r

0

6= ? do

insert an instru
tion `r

0

:= r' in B

0

;

od

�

if 9r : OutSubst[r℄ 6= ? then

if B

from

has multiple su

essors then

reate a new basi
 blo
k B

00

and redire
t all edges out of B

from

to be out of B

00

instead;

add an edge from B

from

to B

00

;

else

B

00

:= B

from

;

�

for ea
h r

0

= OutSubst[r℄ s.t. r

0

6= ? do

insert an instru
tion `r

0

:= r' in B

00

;

od

�

end

Fig. 15. Pseudo
ode for operand repla
ement and move insertion.

38 � Saumya Debray et al.

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. 1985. Compilers|Prin
iples, Te
hniques, and Tools.

Addison-Wesley, Reading, Mass.

Baker, B. S. 1993. A theory of parameterized pattern mat
hing: Algorithms and appli
ations

(extended abstra
t). In Pro
. ACM Symposium on Theory of Computing. ACM Press, New

York, N.Y., 71{80.

Baker, B. S. and Manber, U. 1998. Dedu
ing similarities in Java sour
es from byte
odes. In

Pro
. USENIX Annual Te
hni
al Conferen
e. Usenix, Berkeley, CA, 179{190.

Bene

�

s, M., Nowi
k, S. M., and Wolfe, A. 1998. A fast asyn
hronous Hu�man de
oder for

ompressed-
ode embedded pro
essors. In Pro
. International Symposium on Advan
ed Re-

sear
h in Asyn
hronous Cir
uits and Systems. IEEE Computer So
iety, Washington, D.C.

Cooper, K. D. and M
Intosh, N. 1999. Enhan
ed
ode
ompression for embedded RISC pro
es-

sors. In ACM Conferen
e on Programming Language Design and Implementation. ACM Press,

New York, N.Y., 139{149.

Debray, S., Evans, W., Muth, R., and De Sutter, B. 2000. Compiler te
hniques for
ode

ompa
tion. Te
h. Rep. 00-04, Dept. of Computer S
ien
e, The University of Arizona. Mar.

Ernst, J., Evans, W., Fraser, C., Lu

o, S., and Proebsting, T. 1997. Code
ompression.

In ACM Conferen
e on Programming Language Design and Implementation. ACM Press, New

York, N.Y.

Franz, M. 1997. Adaptive
ompression of syntax trees and iterative dynami

ode optimization:

Two basi
 te
hnologies for mobile-obje
t systems. In Mobile Obje
t Systems: Towards the

Programmable Internet, J. Vitek and C. Ts
hudin, Eds. Number 1222 in Springer Le
ture Notes

in Computer S
ien
e. Springer, Heidelberg, Germany, 263{276. Te
h. Report 97-04, Department

of Information and Computer S
ien
e, University of California, Irvine.

Franz, M. and Kistler, T. 1997. Slim binaries. Commun. ACM 40, 12 (De
.), 87{94.

Fraser, C. and Proebsting, T. 1995. Custom instru
tion sets for
ode
ompression. Unpublished

manus
ript. http://resear
h.mi
rosoft.
om/ toddpro/papers/pldi2.ps.

Fraser, C., Myers, E., and Wendt, A. 1984. Analyzing and
ompressing assembly
ode. In

Pro
. of the ACM SIGPLAN Symposium on Compiler Constru
tion. Vol. 19. ACM Press, New

York, N.Y., 117{121.

Fraser, C. W. and Hanson, D. R. 1995. A Retargetable C Compiler: Design and Implementa-

tion. Addison-Wesley, Reading, Mass.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intra
tability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, New York, N.Y.

Knoop, J., R

�

uthing, O., and Steffen, B. 1994. Optimal
ode motion: Theory and pra
ti
e.

ACM Trans. Program. Lang. Syst. 16, 4 (July), 1117{1155.

Mu
hni
k, S. S. 1997. Advan
ed Compiler Design and Implementation. Morgan Kaufman, San

Fran
is
o, CA.

Muth, R., Debray, S. K., Watterson, S., and Boss
here, K. D. 1998. alto : A link-time

optimizer for the DEC Alpha. Te
h. Rep. 98-14, Dept. of Computer S
ien
e, The University of

Arizona. De
. To appear in Software Pra
ti
e and Experien
e.

Pettis, K. and Hansen, R. C. 1990. Pro�le-guided
ode positioning. In ACM Conferen
e on

Programming Language Design and Implementation. ACM Press, New York, N.Y., 16{27.

Proebsting, T. 1995. Optimizing an ANSI C interpreter with superoperators. In Pro
. Symp.

on Prin
iples of Programming Languages. ACM Press, New York, N.Y., 322{332.

van de Wiel, R. 2000. The \Code Compa
tion" Bibliography.

http://www.win.tue.nl/
s/pa/rikvdw/bibl.html.

Zastre, M. J. 1993. Compa
ting obje
t
ode via parameterized pro
edural abstra
tion. M.S.

thesis, Dept. of Computing S
ien
e, University of Vi
toria.

