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1. INTRODUCTION

In reent years there has been an inreasing trend towards the inorporation of

omputers into a wide variety of devies, suh as palm-tops, telephones, embedded

ontrollers, et. In many of these devies, the amount of memory available is

limited due to onsiderations suh as spae, weight, power onsumption, or prie.

At the same time, there is an inreasing desire to use more and more sophistiated

software in suh devies, suh as enryption software in telephones, or speeh or

image proessing software in laptops and palm-tops. Unfortunately, an appliation

that requires more memory than is available on a partiular devie will not be

able to run on that devie. This makes it desirable to try to redue the size of

appliations where possible. This artile explores the use of ompiler tehniques to

aomplish this ode ompation.

Previous work in reduing program size has explored the ompressiblity of a wide

range of program representations: soure languages, intermediate representations,

mahine odes, et. [van de Wiel 2000℄. The resulting ompressed form either

must be deompressed (and perhaps ompiled) before exeution [Ernst et al. 1997;

Franz 1997; Franz and Kistler 1997℄, or it an be exeuted (or interpreted [Fraser

and Proebsting 1995; Proebsting 1995℄) without deompression [Cooper and MIn-

tosh 1999; Fraser et al. 1984℄. The �rst method results in a smaller ompressed

representation than the seond, but requires the overhead of deompression before

exeution. Deompression time may be negligible and, in fat, may be ompensated

for by the savings in transmission or retrieval time [Franz and Kistler 1997℄. A more

severe problem is the spae required to plae the deompressed ode. This also has

been somewhat mitigated by tehniques of partial deompression or deompression-

on-the-y [Bene�s et al. 1998; Ernst et al. 1997℄, but these tehniques require altering

the run-time operation or the hardware of the omputer. In this artile, we explore

\ompation," i.e., ompression to an exeutable form. The resulting form is larger

than the smallest ompressed representation of the program, but we do not pay

any deompression overhead or require more spae in order to exeute.

Muh of the earlier work on ode ompation to yield smaller exeutables treated

an exeutable program as a simple linear sequene of instrutions, and used pro-

edural abstration to eliminated repeated ode fragments. Early work by Fraser

et al. [1984℄ used a suÆx tree onstrution to identify repeated sequenes within a

sequene of assembly instrutions, whih were then abstrated out into funtions.

Applied to a range of Unix utilities on a Vax proessor, this tehnique managed

to redue ode size by about 7% on the average. A shortoming of this approah

is that sine it relies on a purely textual interpretation of a program, it is sensi-

tive to super�ial di�erenes between ode fragments, e.g., due to di�erenes in

register names, that may not atually have any e�et on the behavior of the ode.

This shortoming was addressed by Baker [1993℄ using parameterized suÆx trees,

by Cooper and MIntosh [1999℄ using register renaming (Baker and Manber [1998℄

disuss a similar approah), and by Zastre [1993℄ using parameterized proedural

abstrations. The main idea is to rewrite instrutions so that instead of using

hard-oded register names, the (register) operands of an instrution are expressed,

if possible, in terms of a previous referene (within the same basi blok) to that

register. Further, branh instrutions are rewritten, where possible, in PC-relative



Compiler Tehniques for Code Compation � 3

form. These transformations allow the suÆx tree onstrution to detet the rep-

etition of similar but not lexially idential instrution sequenes. Cooper and

MIntosh obtain a ode size redution of about 5% on the average using these

tehniques on lassially optimized ode (in their implementation, lassial opti-

mizations ahieve a ode size redution of about 18% ompared to unoptimized

ode). These approahes nevertheless su�er from two weaknesses. The �rst is that

by fousing solely on eliminating repeated instrution sequenes, they ignore other,

potentially more pro�table, soures of ode size redution. The seond is that any

approah that treats a program as a simple linear sequene of instrutions, as in

the suÆx-tree-based approahes mentioned above, will su�er from the disadvan-

tage of having to work with a partiular ordering of instrutions. The problem is

that two \equivalent" omputations may map to di�erent instrution sequenes in

di�erent parts of a program, due to di�erenes in register usage and branh la-

bels, instrution sheduling, and pro�le-direted ode layout to improve instrution

ahe utilization [Pettis and Hansen 1990℄.

This artile desribes a somewhat di�erent approah to ode ompation, based

on a \whole-system" approah to the problem. Its main ontribution is to show

that by using aggressive interproedural optimization together with proedural ab-

stration of repeated ode fragments, it is possible to obtain signi�antly greater

redutions in ode size than have been ahieved to date. For the identi�ation and

abstration of repeated ode fragments, moreover, it shows how \equivalent" ode

fragments an be deteted and fatored out without having to resort to purely lin-

ear treatments of ode sequenes as in suÆx-tree-based approahes. Thus, instead

of treating a program as a simple linear sequene of instrutions, we work with its

(interproedural) ontrol ow graph. Instead of using a suÆx tree onstrution to

identify repeated instrution sequenes, we use a �ngerprinting sheme to identify

\similar" basi bloks. This sets up a framework for ode ompation that an be

more exible in its treatment of what ode fragments are onsidered \equivalent."

We use the notions of dominators and postdominators to detet idential subgraphs

of the ontrol ow graph, larger than a single basi blok, that an be abstrated out

into a proedure. Finally, we identify and take advantage of arhiteture-spei�

ode idioms, e.g., for saving and restoring spei� sets of registers at the entry to and

return from funtions. Among the bene�ts of suh an approah is that it simpli�es

the development of ode ompation systems by using information already available

in most ompilers, suh as the ontrol ow graph and dominator/postdominator

trees, thereby making it unneessary to resort to extraneous strutures suh as

suÆx trees.

Our ideas have been implemented in the form of a binary-rewriting tool based

on alto, a post-link-time ode optimizer [Muth et al. 1998℄. The resulting sys-

tem, alled squeeze, is able to ahieve signi�antly better ompation than previous

approahes, reduing the size of lassially optimized ode by about 30%. Our

ideas an be inorporated fairly easily into ompilers apable of interproedural

ode transformations. The ode size redutions we ahieve ome from two soures:

aggressive interproedural appliation of lassial ompiler analyses and optimiza-

tions; and ode fatoring, whih refers to a variety of tehniques to identify and

\fator out" repeated instrution sequenes. Setion 2 disusses those lassial op-

timizations, and their supporting analyses, that are useful for reduing ode size.
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This is followed, in Setion 3, by a disussion of the ode fatoring tehniques used

within squeeze. In Setion 4, we disuss interations between lassial optimizations

and fatoring transformations. Setion 5 ontains our experimental results.

A prototype of our system is available at www.s.arizona.edu/alto/squeeze.

2. CLASSICAL ANALYSES AND OPTIMIZATIONS FOR CODE COMPACTION

In the ontext of ode ompation via binary rewriting, it makes little sense to

allow the ompiler to inate the size of the program, via transformations suh

as proedure inlining or loop unrolling, or to keep obviously unneessary ode by

failing to perform, for example, ommon-subexpression elimination and register

alloation. We assume therefore that before ode ompation is arried out at

link time, the ompiler has already been invoked with the appropriate options to

generate reasonably ompat ode. Nevertheless, many opportunities exist for link-

time ode transformations to redue program size. This setion disusses lassial

program analyses and optimizations that are most useful for ode size redution.

In general, the optimizations implemented within squeeze have been engineered so

as to avoid inreases in ode size. For example, proedure inlining is limited to

those proedures that have a single all site, and no alignment no-ops are inserted

during instrution sheduling and instrution ahe optimization.

2.1 Optimizations for Code Compation

Classial optimizations that are e�etive in reduing ode size inlude the elimina-

tion of redundant, unreahable, and dead ode, as well as ertain kinds of strength

redution.

2.1.1 Redundant-Code Elimination. A omputation in a program is redundant

at a program point if it has been omputed previously and its result is guaranteed

to be available at that point. If suh omputations an be identi�ed, they an

obviously be eliminated without a�eting the behavior of the program.

A large portion of ode size redutions at link time in squeeze omes from the

appliation of this optimization to omputations of a hardware register alled the

global pointer (gp) register whih points to a olletion of 64-bit onstants alled a

global address table. The Alpha proessor, on whih squeeze is implemented, is a 64-

bit arhiteture with 32-bit instrutions. When a 64-bit onstant must be loaded

into a register, the appropriate global address table is aessed via the gp regis-

ter, together with a 16-bit displaement.

1

Aessing a global objet, i.e., loading

from or storing to a global variable, or jumping to a proedure, therefore involves

two steps: loading the address of the objet from the global address table, and

then aessing the objet via the loaded address. Eah proedure in an exeutable

program has an assoiated global address table, though di�erent proedures may

share the same table. Sine di�erent proedures|whih are generally ompiled

1

On a typial 32-bit arhiteture, with 32-bit instrution words and 32-bit registers, a (32-bit)

onstant is loaded into a register via two instrutions, one to load the high 16 bits of the register

and one for the low 16 bits; in eah of these instrutions, the 16 bits to be loaded are enoded as

part of the instrution word. However, sine the Alpha has 32-bit instrutions but 64-bit registers,

this mehanism is not adequate for loading a 64-bit onstant (e.g., the address of a proedure or

a global variable) into a register.
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independently|may need di�erent global pointer values, the value of the gp regis-

ter is omputed whenever a funtion is entered, as well as whenever ontrol returns

after a all to another funtion. At link time, it is possible to determine whether a

set of funtions has the same gp value, and therefore whether the reomputation of

gp is neessary. It turns out that most funtions in a program are able to use the

same value of gp, making the reomputation of gp redundant in most ases. Eah

suh omputation of gp involves just one or two register operations, with no sig-

ni�ant lateny. On a supersalar proessor suh as the Alpha, the orresponding

instrutions an generally be issued simultaneously with those for other omputa-

tions, and hene do not inur a signi�ant performane penalty. Beause of this,

the elimination of gp omputations generally does not lead to any signi�ant im-

provements in speed. However, beause there are so many reomputations of gp

in a program, the elimination of redundant gp omputations an yield signi�ant

redutions in size.

2.1.2 Unreahable-Code Elimination. A ode fragment is unreahable if there is

no ontrol ow path to it from the rest of the program. Code that is unreahable an

never be exeuted, and an therefore be eliminated without a�eting the behavior

of the program.

At link time, unreahable ode arises primarily from the propagation of infor-

mation aross proedure boundaries. In partiular, the propagation of the values

of atual parameters in a funtion all into the body of the alled funtion an

make it possible to statially resolve the outomes of onditional branhes in the

allee. Thus, if we �nd, as a result of interproedural onstant propagation, that

a onditional branh within a funtion will always be taken, and there is no other

ontrol ow path to the ode in the branh that is not taken, then the latter ode

beomes unreahable and an be eliminated.

Unreahable ode analysis involves a straightforward depth-�rst traversal of the

ontrol ow graph, and is performed as soon as the ontrol ow graph of the program

has been omputed. Initially, all basi bloks are marked as unreahable, exept

for the entry blok for the whole program, and a dummy blok alled B

unknown

,

whih has an edge to eah basi blok whose predeessors are not all known (see

Setion 2.2.1). The analysis then traverses the interproedural ontrol ow graph

and identi�es reahable bloks: a basi blok is marked reahable if it an be reahed

from another blok that is reahable. Funtion alls and the orresponding return

bloks are handled in a ontext-sensitive manner: the basi blok that follows a

funtion all is marked reahable only if the orresponding all site is reahable.

2.1.3 Dead-Code Elimination. Dead ode refers to omputations whose results

are never used. The notion of \results not used" must be onsidered broadly. For

example, if it is possible for a omputation to generate exeptions or raise signals

whose handling an a�et the behavior of the rest of the program, then we annot

onsider that omputation to be dead. Code that is dead an be eliminated without

a�eting the behavior of the program.

Link-time opportunities for dead-ode elimination arise primarily as a result of

unreahable-ode elimination that transforms partially dead omputations (om-

putations whose results are used along some exeution paths from a program point

but not others) into fully dead ones.
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2.1.4 Strength Redution. Strength redution refers to the replaement of a se-

quene of instrutions by an equivalent but heaper (typially, faster) sequene.

In general, the heaper instrution sequene may not be shorter than the origi-

nal sequene (e.g., multipliation or division operations where one of the operands

is a known onstant an be replaed by a heaper but longer sequene of bit-

manipulation operations suh as shifts and adds). The bene�ts for ode ompation

ome from situations where the replaement sequene happens to be shorter than

the original sequene.

In squeeze, ode size improvements from strength redution ome primarily from

its appliation to funtion alls. Like many proessors, the Alpha has two di�erent

funtion all instrutions: the bsr (\branh subroutine") instrution, whih uses

PC-relative addressing and is able to aess targets within a �xed displaement of

the urrent loation; and the jsr (\jump subroutine") instrution, whih branhes

indiretly through a register and an target any address. The ompiler typially

proesses programs a funtion at a time and generates ode for funtion alls with-

out knowledge of how far away in memory the allee is. Beause of this, funtion

alls are translated to jsr instrutions. This, in turn, requires that the 64-bit

address of the allee be loaded into a register prior to the jsr. As disussed in

Setion 2.1.1, this is done by loading the address of the allee from a global address

table. The ode generated for a funtion all onsists therefore of a load instrution

followed by a jsr instrution. If this an be strength-redued to a bsr instrution,

we obtain a savings in ode size as well as an improvement in exeution speed.

2.2 Program Analyses for Code Compation

Three program analyses turn out to be of fundamental importane for the trans-

formations disussed above, and are disussed in this setion.

2.2.1 Control Flow Analysis. Control ow analysis is essential for all of the op-

timizations disussed in Setion 2.1. It is neessary for redundant-ode elimination,

sine, in order to identify a omputation as redundant at a program point, we have

to verify that it has been omputed along every exeution path up to that point.

It is neessary for unreahable-ode elimination as well as dead-ode elimination

beause the lassi�ation of ode as unreahable or dead relies fundamentally on

knowing the ontrol ow behavior of the program. Finally, the strength redution

transformation for funtion alls disussed in Setion 2.1.4 relies on the knowledge

of the targets of suh alls.

Traditional ompilers generally onstrut ontrol ow graphs for individual fun-

tions, based on some intermediate representation of the program, in a straightfor-

ward way [Aho et al. 1985℄. Things are somewhat more omplex at link time beause

mahine ode is harder to deompile. In squeeze, we onstrut the interproedural

ontrol ow graph for a program as follows:

(1) The start address of the program appears at a �xed loation within the header

of the �le (this loation may be di�erent for di�erent �le formats). Using this as

a starting point, we use the \standard" algorithm [Aho et al. 1985℄ to identify

leaders and basi bloks, as well as funtion entry bloks. We use the reloation

information of the exeutable to identify additional leaders, suh as jump table

targets, whih might otherwise not be deteted, and we mark these basi bloks
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as reloatable. At this stage, we make two assumptions: (1) that eah funtion

has a single entry blok and (2) that all of the basi bloks of a funtion are

laid out ontiguously. If the �rst assumption turns out to be inorret, we

\repair" the ow graph at a later stage. If the seond assumption does not

hold, the onstruted ontrol ow graph may ontain (safe) impreisions whih

may ause less e�etive (size) optimizations.

(2) We add edges to the ow graph. If the exat target of a ontrol transfer

instrution annot be resolved, we assume that the transfer is to a speial blok

B

unknown

(in the ase of indiret jumps) or funtion F

unknown

(in the ase of

indiret funtion alls). We onservatively assume that B

unknown

and F

unknown

de�ne and use all registers, et. Any basi blok whose start address is marked

as reloatable may be the target of any unresolved indiret jump. Thus, we

add an edge from B

unknown

to eah suh blok. Any funtion whose entry point

is marked as reloatable may be the target of any unresolved indiret funtion

all. Thus, we add a all edge to it from F

unknown

. (This is safe, but overly

onservative. We disuss, below, how this an be improved.)

(3) We arry out interproedural onstant propagation on the resulting ontrol ow

graph, as desribed in Setion 2.2.2. We use the results to determine addresses

that are loaded into registers. This information is used, in turn, to resolve

the targets of indiret jumps and funtion alls. If we an resolve suh targets

unambiguously, we replae the edge to F

unknown

or B

unknown

by an edge to the

appropriate target.

(4) Thus far, we have assumed that a funtion all returns to its aller at the

instrution immediately after the all instrution. At the level of exeutable

ode, this assumption an be violated in two ways.

2

The �rst involves esap-

ing branhes|ordinary (i.e., non-funtion-all) jumps from one funtion into

another|that arise either due to tail all optimization, or beause of ode shar-

ing in hand-written assembly ode (suh as is found in, for example, some nu-

merial libraries). The seond involves nonloal ontrol transfers via funtions

suh as setjmp and longjmp. Both these ases are handled by the insertion

of additional ontrol ow edges, whih we all ompensation edges, into the

ontrol ow graph. In the former ase, esaping branhes from a funtion f

to a funtion g result in a single ompensation edge from the exit node of g

to the exit node of f . In the latter ase, a funtion ontaining a setjmp has

an edge from F

unknown

to its exit node, while a funtion ontaining a longjmp

has a ompensation edge from its exit node to F

unknown

. The e�et of these

ompensation edges is to fore the various dataow analyses to approximate

safely the ontrol ow e�ets of these onstruts.

(5) Finally, squeeze attempts to resolve indiret jumps through jump tables, whih

arise from ase or swith statements. The essential idea is to use onstant

propagation to identify the start address of the jump table, and the bounds

2

In some arhitetures, the allee may expliitly manipulate the return address under some ir-

umstanes. For example, the SPARC alling onvention allows an extra word to follow a all

instrution. In suh a ase, the allee inrements the return address to skip over this word. (We

are grateful to an anonymous referee for pointing this out to us.) Suh situations do not arise in

the Alpha arhiteture, and are not handled by squeeze.
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hek instrution(s) to determine the extent of the jump table. The edge from

the indiret jump to B

unknown

is then replaed by a set of edges, one for eah

entry in the jump table. If all of the indiret jumps within a funtion an be

resolved in this way, any remaining edges from B

unknown

to basi bloks within

that funtion are deleted.

Potentially, any proedure whose entry-point address is stored in a data setion

an have this (reloatable) address used somewhere in the program as the target

of an indiret funtion all. Beause of this, as mentioned in step (2) above, suh

proedures must be assumed to be reahable via indiret alls as long as the pro-

gram ontains any all whose target is unknown. While this is safe, it is overly

onservative. As disussed in Setion 2.1.4, the ode generated by the ompiler for

a funtion all typially onsists of a load from a global address table followed by an

indiret all. (A ompiler an, in priniple, optimize this to a diret all when the

aller and allee are within the same module, but suh a sheme is still neessary for

inter-module alls.) This means that any proedure that is aessible from outside

its own module has its reloatable address stored in the global address table (whih

is in a data setion) and hene will be onsidered to be alled from F

unknown

. As

an indiation of how onservative this simple tehnique is, we note that for the

programs in the SPECint-95 benhmark suite, about 65% of all funtions, on the

average, are onsidered to be alled from F

unknown

.

Alpha exeutables ontain funtion reloation information that we use to improve

the preision of our ontrol ow analysis. The ompiler uses speial reloation en-

tries, referred to as literal reloations, to tag every instrution that loads a funtion

address from a global address table, and every instrution that uses this loaded

address. (These reloation entries play a purely informational role, in that they

an be ignored by the linker without a�eting program behavior.) If every load of a

funtion's address is used simply to jump to that address, we remove the edge from

F

unknown

to the funtion, and replae it with all edges from the basi bloks that

ontain the jump instrutions. If a load of a funtion address is not followed by a

jump, the address may be stored and, thus, may equal any unresolved target. In

this ase, we preserve the edge from F

unknown

to the funtion. For the SPECint-95

benhmarks, this results in fewer than 14% of the proedures having a all from

F

unknown

. The resulting improvement in ontrol ow information has a very sig-

ni�ant e�et on the amount of ode that an be eliminated as unreahable, and

leads to a signi�ant improvement in the amount of ode ompation that an be

realized.

2.2.2 Interproedural Constant Propagation. As mentioned above, we as-

sume that standard ompiler analyses and optimizations|inluding onstant

propagation|have already been arried out prior to link-time ode ompation.

Where do opportunities for link-time onstant propagation then arise? It turns

out, not surprisingly, that onstant values that are propagated at ompile time are

those that are present in soure-level ompilation units, while those propagated at

link time are either values that are not available at ompile time, e.g., addresses of

global names, or those that the ompiler is unable to propagate aross ompilation

unit boundaries, e.g., from a aller to a allee. Link-time onstant propagation

opportunities also arise from arhiteture-spei� omputations that are not visible
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at the intermediate ode representation level typially used by ompilers for most

optimizations. An example of this is the omputation of the gp register on the

Alpha proessor.

The analysis we use in squeeze is essentially standard iterative onstant prop-

agation, limited to registers but arried out aross the ontrol ow graph of the

entire program. This has the e�et of ommuniating information about onstant

arguments from a alling proedure to the allee. To improve preision, squeeze at-

tempts to determine the registers saved on entry to a funtion and restored at the

exit from it. If a register r that is saved and restored by a funtion in this manner

ontains a onstant  just before the funtion is alled, r is inferred to ontain the

value  on return from the all.

Constant propagation turns out to be of fundamental importane for the rest of

the system, sine many ontrol and data ow analyses rely on the knowledge of

onstant addresses omputed in the program. For example, the ode generated by

the ompiler for a funtion all typially �rst loads the address of the alled funtion

into a register, then uses a jsr instrution to jump indiretly through that register.

If onstant propagation determines that the address being loaded is a �xed value

and the allee is not too far away, the indiret funtion all an be replaed by a

diret all using a bsr instrution, as disussed in Setion 2.1.4. This is not only

heaper, but also vital for improving the preision of the interproedural ontrol

ow graph of the program, sine it lets us replae a pair of all/return edges to

F

unknown

with a pair of suh edges to the (known) allee. Another example of the

use of onstant address information involves the identi�ation of possible targets

of indiret jumps through jump tables. Unless this an be done, we must assume

that the indiret jump is apable of jumping to any basi blok of a funtion,

3

and this an signi�antly hamper optimizations. Finally, knowledge of onstant

addresses is useful for optimizations suh as the removal of unneessary memory

referenes. We �nd that on the average, link-time onstant propagation is able to

determine the values of the arguments and results for about 18% of the instrutions

of a program. (This does not mean that these \evaluated" instrutions an all be

removed, sine very often they represent address omputations for indexing into

arrays or strutures or for alling funtions.)

2.2.3 Interproedural Register Liveness Analysis. Code fatoring, disussed in

Setion 3, involves abstrating repeated instrution sequenes into proedures. To

all suh proedures it is neessary to �nd a register that an be used to hold the

return address. Squeeze implements a relatively straightforward interproedural

liveness analysis, restrited to registers, to determine whih registers are live at

any given program point. The analysis is ontext-sensitive in that it maintains

information about whih return edges orrespond to whih all sites, and propa-

gates information only along realizable all/return paths. The \standard" dataow

equations for liveness analysis are extended to deal with idiosynraies of the Alpha

instrution set. For example, the all pal instrution, whih ats as the interfae

with the host operating system, has to be handled speially, sine the registers that

may be used by this instrution are not visible as expliit operands of the instru-

3

More preisely, any basi blok that is marked as \reloatable," as disussed in Setion 2.2.1.
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tion. Our implementation urrently uses the node B

unknown

as the target for suh

alls. The onditional move instrution also requires speial attention, sine the

destination register must also be onsidered as a soure register.

In order to propagate dataow information only along realizable all/return

paths, squeeze omputes summary information for eah funtion, and models the

e�et of funtion alls using these summaries. Given the site of a all to a funtion

f , onsisting of a all node n



and a return node n

r

, the e�ets of the funtion all

on liveness information are summarized via two piees of information:

(1) mayUse[f ℄ is the set of registers that may be used by f . A register r may be

used by f if there is a realizable path from the entry node of f to a use of r

without an intervening de�nition of r. Hene mayUse [f ℄ desribes the set of

registers that are live at the entry to f independent of the alling ontext, and

whih are therefore neessarily live at the all node n



.

(2) byPass [f ℄ is the set of registers whose liveness depends on the alling ontext

for f . This onsists of those registers r suh that, if r is live at n

r

, then r is

also live at n



.

The analysis proeeds in three phases. The �rst two phases ompute summary

information for funtions, i.e., their mayUse and byPass sets. The third phase then

uses this information to do the atual liveness omputation.

It turns out that even ontext-sensitive liveness analyses may be overly onser-

vative if they are not areful in handling register saves and restores at funtion all

boundaries. Consider a funtion that saves the ontents of a register, then restores

the register before returning. A register r that is saved in this manner will appear as

an operand of a store instrution, and therefore appear to be used by the funtion.

In the subsequent restore operation, register r will appear as the destination of a

load instrution, and therefore appear to be de�ned by the funtion. A straightfor-

ward analysis will infer that r is used by the funtion before it is de�ned, and this

will ause r to be inferred as live at every all site for f . To handle this problem,

squeeze attempts to determine, for eah funtion, the set of registers it saves and

restores.

4

If the set of allee-saved registers of funtion f an be determined, we an

use it to improve the preision of the analysis by removing this set from mayUse [f ℄

and adding it to byPass[f ℄ whenever those values are updated during the �xpoint

omputation.

3. CODE FACTORING

Code fatoring involves (1) �nding a multiply-ourring sequene of instrutions,

(2) making one representative sequene that an be used in plae of all ourrenes,

and (3) arranging, for eah ourrene, that the program exeutes the representative

instead of the ourrene. The third step an be ahieved by expliit ontrol transfer

(via a all or jump), or by moving the representative of several ourrenes to a

point that dominates every ourrene. We �rst exploit the latter form of ode

fatoring, sine it involves no added ontrol transfer instrutions.

4

We do not assume that a program will neessarily respet the alling onventions with regard

to allee-saved registers, sine suh onventions are not always respeted in libraries ontaining

hand-written assembly ode. This approah is safe, though sometimes overly onservative.
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B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)
stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

E

Fig. 1. Loal ode fatoring.

3.1 Loal Fatoring Transformations

Inspired by an idea of Knoop et al. [1994℄, we try to merge idential ode fragments

by moving them to a point that pre- or postdominates all the ourrenes of the

fragments. We have implemented a loal variant of this sheme whih we desribe

using the example depited in Figure 1. The left hand side of the �gure shows an

assembly ode owhart with a onditional branh (beq r0) in blok A. Bloks B

and C ontain the same instrution add r5,r6,r8. Sine these instrutions do not

have bakward dependenies with any other instrution in B or C, we an safely

move them into blok A just before the beq instrution, as shown in the right-hand

side of Figure 1. Similarly, bloks B, C, and D share the same store instrution

stq r9,r16(r23), and sine these instrutions do not have forward dependenies

with any other instrution in B, C, and D, they an be safely moved into blok E.

In this ase, it is not possible to move the store instrution from B and C into A

beause, due to the lak of aliasing information, there are bakward dependenies

to the load instrutions (ldq) in B and C. In general, however, it might be possible

to move an instrution either up or down. In this ase, we prefer to move it down,

sine moving it up, over a two-way branh, will eliminate one opy while moving it

down to a blok that has many predeessors might eliminate several opies.

Our sheme uses register realloation to make this transformation more e�etive.

For example, the sub instrutions in B and C write to di�erent registers (r9 and

r19). We an, however, rename r9 to r19 in B, thereby making the instrutions

idential. Another opportunity rests with the xor instrutions in B and C. Even

though they are idential, we annot move them into A beause they write register

r0 whih is used by the onditional branh. Realloating r0 in A to another register

whih is dead at the end of A will make the transformation possible.

3.2 Proedural Abstration

Given a single-entry, single-exit ode fragment C, proedural abstration of C in-

volves (1) reating a proedure f

C

whose body is a opy of C and (2) replaing

the appropriate ourrenes of C in the program text by a funtion all to f

C

.

While the �rst step is not very diÆult, the seond step, at the level of assembly
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or mahine ode, involves a little work.

In order to reate a funtion all using some form of \jump-and-link" instrution

that transfers ontrol to the allee and at the same time puts the return address into

a register, it is neessary to �nd a free register for that purpose. A simple method

is to alulate, for eah register r, the number of ourrenes of ode fragment C

that ould use r as a return register. A register with the highest suh �gure of

merit is hosen as the return register for f

C

. If a single instane of f

C

, using a

partiular return register, is not enough to abstrat out all of the ourrenes of C

in the program, we may reate multiple instanes of f

C

that use di�erent return

registers. We use a more ompliated sheme when abstrating funtion prologs

(see Setion 3.5.1) and regions of multiple basi bloks (see Setion 3.4).

3.3 Proedural Abstration for Individual Basi Bloks

Central to our approah is the ability to apply proedural abstration to individual

basi bloks. In this setion, we disuss how andidate basi bloks for proedural

abstration are identi�ed.

3.3.1 Fingerprinting. To redue the ost of omparing basi bloks to determine

whether they are idential (or similar), we use a �ngerprint funtion to ompute a

�ngerprint for eah basi blok, suh that two bloks with di�erent �ngerprints are

guaranteed to be di�erent. In general, suh �ngerprint funtions are de�ned with

respet to the notion of \equality" between basi bloks. For example, in our urrent

implementation, two bloks are onsidered to be equal if the instrution sequenes

in them are the same. Thus, the �ngerprint funtion of a blok is based on the

sequene of instrutions in the blok. On the other hand, if a ode ompation

sheme de�nes equality of basi bloks with respet to de�nition-use hains then

a �ngerprint based on the number of ourrenes of eah type of opode may be

used.

In our urrent implementation, a �ngerprint is a 64-bit value formed by onate-

nating 4-bit enodings of the opodes of the �rst 16 instrutions in the blok. Sine

most \systems" appliations tend to have short basi bloks, haraterizing the �rst

16 instrutions seems enough for most basi bloks. This means that two bloks

that are di�erent, but whih have the same sequene of opodes for their �rst 16

instrutions, will have the same �ngerprint: we will disover them to be di�erent

later, when we atually ompare them instrution by instrution.

With 4 bits per instrution, we an enode 15 di�erent opodes and reserve one

ode for \other." We deide whih 15 will be expliitly represented by onsidering a

stati instrution ount of the program. The 15 most frequently ourring opodes

are given distint 4-bit patterns. The remaining pattern, 0000, represents opodes

that are not in the top 15 in frequeny.

To redue the number of pairwise omparisons of �ngerprints that must be arried

out, we use a hashing sheme suh that basi bloks in di�erent hash bukets are

guaranteed to have di�erent �ngerprints, and so need not be ompared.

3.3.2 Register Renaming within Basi Bloks. When we �nd two basi bloks

that are \similar," i.e., have the same �ngerprint and the same number of instru-

tions, but whih are not idential, we attempt to rename the registers in one of

them so as to make the two idential. The basi idea is very simple: we rename
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r5 = r4+1
r3 = r5+r2
r6 = r5*r3

B1

r4 = r6*2
r0 = r3-r6

{r1,r2} live

{r3,r4} live

r0 = r1+1

r5 = r0*r1
r3 = r1-r5
r4 = r5*2

r1 = r0+r2

B0

r4 = r1

B1
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

B0
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

r3 = r0

(a) before (b) after

Fig. 2. Example of basi-blok-level register renaming.

registers \loally," i.e., within the basi blok; and if neessary, we insert register-

to-register moves, in new basi bloks inserted immediately before and after the

blok being renamed, so as to preserve program behavior. An example of this is

shown in Figure 2, where blok B0 is renamed to be the same as blok B1.

For soundness, we have to ensure that the renaming does not alter any use-

de�nition relationships. We do this by keeping trak of the set of registers that

are live at eah point in the basi blok, as well as the set of registers that have

already been subjeted to renaming. These sets are then used to detet and dis-

allow renamings that ould alter the program's behavior. The pseudoode for our

renaming algorithm is given in Appendix A.

The renaming algorithm keeps trak of the number of expliit register-to-register

moves that have to be inserted before and after a basi blok that is being renamed.

The renaming is undone if, at the end of the renaming proess, the ost of renaming,

i.e., the number of register moves required together with a funtion all instrution,

exeeds the savings from the renaming, i.e., the number of instrutions in the blok.

Cooper and MIntosh [1999℄ desribe a di�erent approah to register renaming.

They arry out register renaming at the level of entire live ranges. That is, when

renaming a register r

0

to a di�erent register r

1

, the renaming is applied to an

entire live range for r

0

. This has the advantage of not requiring additional register

moves before and after a renamed blok, as our approah does. However, it has

the problem that register renaming to allow the abstration of a partiular pair of

basi bloks may interfere with the abstration of a di�erent pair of bloks. This

is illustrated in Figure 3, where solid double arrows indiate idential basi bloks,

while dashed double arrows indiate bloks that are not idential but whih an be

made idential via register renaming. Bloks B0, B1, and B2 omprise a live range

for register r0, while B3 and B5 omprise a live range for r1. We an rename r0

to r5 in this live range, so as to make bloks B1 and B3 idential, but this will

ause bloks B2 and B4 to not be idential and therefore not abstratable into a

funtion. We an also rename r5 to r0 in blok B3 so as to make it idential to

B1, but this will interfere with the abstration of bloks B5 and B6. Beause of

suh interferene e�ets, it is not lear whether live-range-level renaming produes

results that are neessarily superior to basi-blok-level renaming. Notie that the
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r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

r1 = r0+r1

r3 = r1+r2

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

B4

r1 = r5+r1

r3 = r1+r2

B3

B5

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B0

B1

B2

r0 = load(...)

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B6

r0        r5

r0        r5

Live range for

Live range for

r0

r1

Fig. 3. Interferene e�ets in live-range-level register renaming.

problem ould be addressed by judiiously splitting the live ranges. Indeed, the

loal renaming we use an be seen as the limiting ase of live-range-level renaming

if splitting is applied until no live range spans more than one basi blok.

3.3.3 Control Flow Separation. The approah desribed above will typially not

be able to abstrat two basi bloks that are idential exept for an expliit ontrol

transfer instrution at the end. The reason for this is that if the ontrol transfers

are to di�erent targets, the bloks will be onsidered to be di�erent and so will not

be abstrated. Moreover, if the ontrol transfer instrution is a onditional branh,

proedural abstration beomes ompliated by the fat that two possible return

addresses have to be ommuniated.

To avoid suh problems, basi bloks that end in an expliit ontrol transfer

instrution are split into two bloks: one blok ontaining all the instrutions in

the blok exept for the ontrol transfer, and another blok that ontains only the

ontrol transfer instrution. The �rst of this pair of bloks an then be subjeted

to renaming and/or proedural abstration in the usual way.

The next setion desribes how ode fragments larger than a single basi blok

an be subjeted to proedural abstration.

3.4 Single-Entry/Single-Exit Regions

The disussion thus far has foused on the proedural abstration of individual

basi bloks. In general, however, we may be able to �nd multiple ourrenes of

a ode fragment onsisting of more than one basi blok. In order to apply proe-

dural abstration to suh a region R, at every ourrene of R in the program, we

must be able to identify a single program point at whih ontrol enters R, and a

single program point at whih ontrol leaves R. It isn't hard to see that any set of

basi bloks R with a single entry point and a single exit point orresponds to a

pair of points (d; p) suh that d dominates every blok in R and p postdominates

every blok in R. Conversely, a pair of program points (d; p), where d dominates p

and p postdominates d, uniquely identi�es a set of basi bloks with a single entry

point and single exit point. Two suh single-entry, single-exit regions R and R

0

are

onsidered to be idential if it is possible to set up a 1-1 orrespondene ' between
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their members suh that B

1

' B

0

1

if and only if (1) B

1

is idential to B

0

1

, and (2) if

B

2

is a (immediate) suessor of B

1

under some ondition C, and B

0

2

is a (imme-

diate) suessor of B

0

1

under the same ondition C, then B

2

' B

0

2

. The algorithm

to determine whether two regions are idential works by reursively traversing the

two regions, starting at the entry node, and verifying that orresponding bloks are

idential.

In squeeze, after we apply proedural abstration to individual basi bloks, we

identify pairs of basi bloks (d; p) suh that d dominates p and p postdominates

d. Eah suh pair de�nes a single-entry, single-exit set of basi bloks. We then

partition these sets of basi bloks into groups of idential regions, whih then

beome andidates for further proedural abstration.

As in the ase of basi bloks, we ompute a �ngerprint for eah region so that

regions with di�erent �ngerprints will neessarily be di�erent. These �ngerprints

are, again, 64-bit values. There are 8 bits for the number of basi bloks in the

region and 8 bits for the total number of instrutions, with the bit pattern 11...1

being used to represent values larger than 256. The remaining 48 bits are used to

enode the �rst (aording to a partiular preorder traversal of the region) 8 basi

bloks in the region, with eah blok enoded using 6 bits: two bits for the type

of the blok,

5

and four bits for the number of instrutions in the blok. Again, as

in the ase of basi bloks, the number of pairwise omparisons of �ngerprints is

redued by distributing the regions over a hash table.

It turns out that applying proedural abstration to a set of basi bloks is

not as straightforward as for a single basi blok, espeially in a binary rewriting

implementation suh as ours. The reason is that, in general, when the proedure

orresponding to suh a single-entry, single-exit region is alled, the return address

will be put into a register whose value annot be guaranteed to be preserved through

that entire proedure, e.g., beause the region may ontain funtion alls, or beause

the region may ontain paths along whih that register is overwritten. This means

that the return address register has to be saved somewhere, e.g., on the stak.

However, alloating an extra word on the stak, to hold the return address, an

ause problems unless we are areful. Alloating this spae at the top of the stak

frame an ause hanges in the displaements of other variables in the stak frame,

relative to the top-of-stak pointer, while alloating it at the bottom of the stak

frame an hange the displaements of any arguments that have been passed on the

stak. If there is any address arithmeti involving the stak pointer, e.g., for address

omputations for loal arrays, suh omputations may be a�eted by hanges in

displaements within the stak frame. These problems are somewhat easier to

handle if the proedural abstration is being arried out before ode generation,

e.g., at the level of abstrat syntax trees [Franz 1997℄. At the level of assembly

ode [Cooper and MIntosh 1999; Fraser et al. 1984℄ or mahine ode (as in our

work), it beomes onsiderably more ompliated. There are, however, some simple

ases where it is possible to avoid the ompliations assoiated with having to save

and restore the return address when introduing proedural abstrations. Here,

we identify two suh situations. In both ases, let (d

0

; p

0

) and (d

1

; p

1

) de�ne two

5

In essene, the type of a blok desribes its ontrol ow behavior, i.e., whether it ontains a

proedure all, a onditional branh, an indiret jump through a jump table, et.
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return

d0

p
0

d

p
1

1

return

(a) before

return

d0

p
0

(b) after

Fig. 4. Merging regions ending in returns via ross-jumping.

idential regions.

The �rst ase involves situations where p

0

and p

1

are return bloks, i.e., bloks

from whih ontrol returns to the aller. In this ase there is no need to use

proedural abstration to reate a separate funtion for the two regions. Instead,

we an use a transformation known as ross-jumping [Muhnik 1997℄, where the

ode in the region (d

1

; p

1

) is simply replaed by a branh to d

0

. The transformation

is illustrated in Figure 4.

In the seond ase, suppose that it is possible to �nd a register r that (1) is not

live at entry to either region, and (2) whose value an be guaranteed to be preserved

up to the end of the regions (r may be a general-purpose register that is not de�ned

within either region, or a allee-saved register that is already saved and restored

by the funtions in whih the regions our). In this ase, when abstrating these

regions into a proedure p, it is not neessary to add any ode to expliitly save and

restore the return address for p. The instrution to all p an simply put the return

address in r, and the return instrution(s) within p an simply jump indiretly

through r to return to the aller.

If neither of these onditions is satis�ed, squeeze tries to determine whether the

return address register an be safely saved on the stak at entry to p, and restored at

the end. For this, it uses a onservative analysis to determine whether a funtion

may have arguments passed on the stak, and whih, if any, registers may be

pointers into the stak frame. Given a set of andidate regions to be abstrated

into a representative proedure, it heks the following:

(1) for eah funtion that ontains a andidate region, it must be safe, with respet

to the problems mentioned above, to alloate a word on the stak frame of the

funtion;

(2) a register r

0

must be free at entry to eah of the regions under onsideration;

(3) a register r

1

must be free at the end of eah of the regions under onsideration;

and

(4) there should not be any alls to setjmp()-like funtions that an be a�eted

by a hange in the struture of the stak frame.
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If these onditions are satis�ed then, on entry, p alloates an additional word on

the stak and saves the return address (passed via r

0

) into this loation; and, on

exit, loads the return address from this loation (using r

1

) and restores the stak

frame. The urrent implementation of the safety hek desribed above is quite

onservative in its treatment of funtion alls within a region. In priniple, if we

�nd that spae an be alloated on the stak but have no free registers for the

return address at entry or exit from the abstrated funtion, it should be possible

to alloate an extra word on the stak in order to free up a register, but we have

not implemented this.

3.5 Arhiteture-Spei� Idioms

Apart from the general-purpose tehniques desribed earlier for deteting and ab-

strating out repeated ode fragments, there are mahine-spei� idioms that an

be pro�tably exploited. In partiular, the instrutions to save and restore registers

(the return address and allee-saved registers) in the prolog and epilog of eah fun-

tion generally have a preditable struture and are saved at preditable loations

within the stak frame. For example, the standard alling onvention for the Com-

paq Alpha AXP arhiteture under Tru64 Unix

6

treats register r26 as the return

address register (ra) and registers r9 through r15 as allee-saved registers. These

are saved at loations 0x0(sp), 0x8(sp), 0x10(sp), and so on. Abstrating out

suh instrutions an yield onsiderable savings in ode size. Suh arhiteture-

spei� save/restore sequenes are reognized and handled speially by squeeze, for

two reasons: �rst, these instrutions often do not form a ontiguous sequene in

the ode stream; and seond, handling them speially allows us to abstrat them

out of basi bloks that may not be idential to eah other.

3.5.1 Abstrating Register Saves. In order to abstrat out the register save in-

strutions in the prolog of a funtion f into a separate funtion g, it is neessary to

identify a register that an be used to hold the return address for the all from f to

g. For eah register r, we �rst ompute the savings that would be obtained if r were

to be used for the return address for suh alls. This is done by totaling up, for eah

funtion f where r is free at entry to f , the number of registers saved in f 's prolog.

We then hoose a register r with maximum savings (whih must exeed 0), and

generate a family of funtions Save

r

15

; : : : ;Save

r

9

;Save

r

ra

that save the allee-saved

registers and the return address register, and then return via register r. The idea

is that funtion Save

r

i

saves register i and then falls through to funtion Save

r

i�1

.

As an example, suppose we have two funtions f0() and f1(), suh that f0()

saves registers r9, . . . , r14, and f1() saves only register r9. Assume that register

r0 is free at entry to both these funtions and is hosen as the return address

register. The ode resulting from the transformation desribed above is shown in

Figure 5.

It may turn out that the funtions subjeted to this transformation do not use

all of the allee-saved registers. For example, in Figure 5, suppose that none of the

funtions using return address register r0 save register r15. In this ase, the ode

for the funtion Save

0

15

beomes unreahable and is subsequently eliminated.

6

Tru64 Unix was formerly known as Digital Unix.
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Save0
15

Save0
14

Save0
9

Save0
ra

Save0
14

sp = sp - 32
bsr  r0, Save0

9

. . .

f0:

bsr  r0, 
sp = sp - 40

f1:

stq  r15, 0x38(sp)

stq r14, 0x30(sp)

stq  r9, 0x8(sp)

stq  ra, 0x0(sp)
ret  (r0)

Fig. 5. Example ode from abstration of register save ations from funtion prologs.

A partiular hoie of return address register, as desribed above, may not a-

ount for all of the funtions in a program. The proess is therefore repeated,

using other hoies of return address registers, until either no further bene�t an

be obtained, or all funtions are aounted for.

3.5.2 Abstrating Register Restores. The ode for abstrating out register re-

store sequenes in funtion epilogs is oneptually analogous to that desribed

above, but with a few di�erenes. If we were simply to do the opposite of what

was done for register saves in funtion prologs, the ode resulting from proedural

abstration at eah return blok for a funtion might have the following struture,

with three instrutions to manage the ontrol transfers and stak pointer update:

...

bsr r1, Restore /* all funtion that restores registers */

sp = sp + k /* dealloate stak frame */

ret (ra) /* return */

If we ould somehow move the instrution for dealloating the stak frame into

the funtion that restores saved registers, there would be no need to return to the

funtion f whose epilog we are abstrating: ontrol ould return diretly to f 's

aller (in e�et realizing tail all optimization). The problem is that the ode to

restore saved registers is used by many di�erent funtions, whih in general have

stak frames of di�erent sizes, and hene need to adjust the stak pointer by di�erent

amounts. The solution to this problem is to pass, as an argument to the funtion

that restores registers, the amount by whih the stak pointer must be adjusted.

Sine the return address register ra is guaranteed to be free at this point|it is

about to be overwritten with f 's return address prior to returning ontrol to f 's

aller|it an be used to pass this argument.

7

Sine there is now no need for ontrol

to return to f after the registers have been restored|it an return diretly to f 's

aller|we an simply jump from funtion f to the funtion that restores registers,

instead of using a funtion all. The resulting ode requires two instrutions instead

of three in eah funtion return blok:

7

In pratie not all funtions an be guaranteed to follow the standard alling onvention, so it is

neessary to verify that register ra is, in fat, being used as the return address register by f .



Compiler Tehniques for Code Compation � 19

to f0’s caller(s) to ’s caller(s)f1

. . .

15

14

9

ra

ldq  r15, 0x38(sp)

ldq r14, 0x30(sp)

ldq  r9, 0x8(sp)

Restore

Restore

Restore

Restore

ra = 32 ra = 40
f0: f1:

sp  =  sp + ra
stq ra, 0x8(sp)
ldq   ra, 0(sp)
ldq   sp, 0x8(sp)
ret    (ra)

Fig. 6. Example ode from abstration of register restore ations from funtion epilogs.

ra = k /* sp needs to be adjusted by k */

br Restore /* jump to funtion that restores registers */

The ode in the funtion that restores registers is pretty muh what one would

expet. Unlike the situation for register save sequenes disussed in Setion 3.5.1,

we need only one funtion for restoring registers. The reason for this is that there is

no need to all this funtion: ontrol an jump into it diretly, as disussed above.

This means that we do not have to generate di�erent versions of the funtion with

di�erent return address registers. The overall struture of the ode is analogous to

that for saving registers: there is a hain of basi bloks, eah of whih restores a

allee-saved register, with ontrol falling through into the next blok, whih saves

the next (lower-numbered) allee-saved register, and so on. The last member of

this hain adjusts the stak pointer appropriately, loads the return address into a

register, and returns. There is, however, one minor twist at the end. The amount

by whih the stak pointer must be adjusted is passed in register ra, so this register

annot be overwritten until after it has been used to adjust the stak pointer. On

the other hand, sine the memory loation from whih f 's memory address is to

be restored is in f 's stak frame, we annot adjust the stak pointer until after the

return address has been loaded into ra. At �rst glane, it seems that the problem

an be addressed using something like the following instrution sequene:

sp = sp + ra /* sp = sp + ra � new sp */

ra = sp - ra /* ra = sp - ra � old sp */

ra = load 0(ra) /* ra = return address */

ret (ra)

This ode is inorret, however, beause the stak pointer is updated|i.e., the stak

frame is dealloated|before the return address is loaded from the stak frame. As

a result, if an interrupt ours between the end of the �rst instrution and the

beginning of the third instrution, the return address may be overwritten, resulting

in inorret behavior. To avoid this, we have to ensure that the stak pointer update

is the last instrution before the ret instrution. We do this by �rst omputing the

new value of the stak pointer and storing it in the stak frame (in the slot where the

�rst allee-saved register, was originally stored), then updating the return address
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register, and �nally loading the new value of the stak pointer from memory:

8

ra = sp + ra /* ra = sp + ra � new sp */

8(sp) = store ra /* new sp saved at loation 8(sp) */

ra = load 0(sp) /* ra = return address */

sp = load 8(sp) /* sp = new sp */

ret (ra)

The resulting ode for restoring saved registers, for the funtions onsidered in the

example illustrated in Figure 5, is shown in Figure 6.

We go through these ontortions in order to minimize the number of registers

used. If we ould �nd another register that is free at the end of every funtion, we

ould load the return address into this register, resulting in somewhat simpler ode.

However, in general it is not easy to �nd a register that is free at the end of every

funtion. The reason we go to suh lengths to eliminate a single instrution from

eah return blok is that there are a lot of return bloks in the input programs,

typially amounting to about 3%{7% of the basi bloks in a program, exluding

return bloks for leaf routines that do not alloate/dealloate a stak frame (there

is usually at least one|and, very often, more than one|suh blok for eah fun-

tion). The elimination of one instrution from eah suh blok translates to a ode

size redution of about 1%{2% overall. (This may seem small, but to put it in per-

spetive, onsider that Cooper and MIntosh report an overall ode size redution

of about 5% using suÆx-tree-based tehniques.)

3.6 Abstrating Partially Mathed Bloks

As disussed in the preeding setions, the smallest ode unit onsidered for pro-

edural abstration by squeeze is the basi blok. In other words, squeeze will not

attempt to arry out any form of proedural abstration on two bloks that are

not the same, even though there may be a signi�ant amount of \partial math"

between them, i.e., the bloks may share ommon subsequenes of instrutions.

This is illustrated by the pair of basi bloks shown in Figure 7(a), with mathed

instrutions indiated by lines drawn between them. Our experiments, desribed in

this setion, indiate that abstration of partially mathed bloks is omputation-

ally quite expensive but adds very little additional savings in ode size. For this

reason we have hosen not to inlude partial mathing within squeeze.

There are two issues that have to be addressed when onsidering proedural ab-

stration of partially mathed bloks: �rst, how to identify partially mathed bloks

to abstrat; and seond, how to transform the ode to e�et this abstration. In

our experiments, abstration of partially mathed bloks was arried out after pro-

edural abstration of \fully mathed" bloks, disussed in Setion 3.3. In general,

a partiular basi blok B

0

may be partially mathed against many di�erent bloks,

whih may math di�erent subsequenes of its instrutions. The savings obtained

from proedural abstration in this ase depends on the blok B

1

that is hosen as a

math. One a blok B

1

is partially mathed with B

0

and subjeted to proedural

abstration, B

1

is not available for partial mathing against other basi bloks. This

8

We are indebted to Anders Lindgren for pointing out the problem in our original ode, as well

as suggesting the solution shown.
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r1 = r2+1

r1 = r1+r3

ld r2, 0(r2)

r3 = r1+8

r4 = r0+4

r1 = r4+r2

st r1, 12(sp)

r1 = r2+1

r1 = r1+r3

st r1, 16(r0)

r3 = r1+8

ld r7, 8(sp)

r2 = r7*r3

r1 = r4+r2

st r1, 12(sp)

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

(a) A pair of partially mathed bloks.

ld  r2, 0(r2)
B1

st  r1, 16(r0)

r4 = r0+4 ld  r7, 8(sp)
r2 = r7*r3

r1 = r2+1
r1 = r1+r3

r3 = r1+8

st  r1, 12(sp)
r1 = r4+r2

B0

B2

B3

B4 B5

B6

return

ld  r2, 0(r2)
B1

r3 = r1+8
r4 = r0+4

r1 = r2+1
r1 = r1+r3

B0

B2
st  r1, 16(r0)
r3 = r1+8
ld  r7, 8(sp)
r2 = r7*r3

st  r1, 12(sp)
r1 = r4+r2

B6

return

(b) Proedure obtained from the maximal

mathing

() Proedure obtained after unmathing

unpro�table instrutions

Fig. 7. Proedural abstration of partially mathed bloks.

means that even though, from B

0

's perspetive, B

1

may yield the largest savings

when proedural abstration is arried out, this may not be the best hoie globally,

sine we may have obtained greater savings by mathing B

1

with some other blok.

The problem of omputing a globally optimal set of partial mathes for a set of

basi bloks, i.e., one that maximizes the savings obtained from their proedural

abstration, is omputationally diÆult (the related longest ommon subsequene

problem is NP-omplete [Garey and Johnson 1979℄). We therefore take a greedy

approah, proessing basi bloks in dereasing order of size. When proessing a

blok B

0

, we ompare it against all other bloks and hoose a blok B

1

that yields

maximal savings (omputed as disussed below) when proedural abstration is

arried out based on partial mathing of B

0

and B

1

: B

1

is then put into a partition

assoiated with B

0

. When all bloks have been proessed in this manner, all of the

bloks in the same partition are abstrated into a single proedure.

The bene�t obtained from the proedural abstration of two partially mathed

bloks B

0

and B

1

is determined as follows. First, we use dynami programming to

determine the minimum edit distane between the two bloks, and thus the best
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math between them. Now onsider the seond issue mentioned above, namely,

arrying out the program transformation. Sine we have a partial math between

these bloks, there will have to be multiple exeution paths through the resulting

proedure, suh that the all from B

0

will take one path while that from B

1

will

take another. We an do this by passing an argument to the abstrated proedure

indiating, for any all, whih all site it originated from, and therefore whih

instrutions it should exeute. When sanning down bloks B

0

and B

1

, whenever

we �nd a mismathed sequene of instrutions in either blok, we generate ode

in the abstrated proedure to test this argument and exeute the appropriate

instrution sequene based on the outome. Figure 7(b) shows the ontrol ow

graph of the resulting proedure. In addition to the instrutions shown, we also

have to manage ontrol ow. For this, we need a onditional branh at the end of

bloks B0 and B3 (in general, if there are more than two bloks in the partition

being abstrated, we may need expliit omparison operations to determine whih

of a set of alternatives to exeute), and an unonditional branh for eah of the

pairs of bloks fB1, B2g and fB4, B5g, for a total of 15 instrutions. Notie

that by designating the instrution in blok B3 as a \math" between the two

original bloks, and thereby having B3 be ommon to the exeution paths for both

of the all sites of the proedure, we save a single opy of this instrution, but

pay a penalty of two branh instrutions for managing ontrol ow around it. In

this ase, it turns out to be better, when determining the original partial math,

to ignore the fat that the two r3 = r1+8 instrutions an be mathed. This

would yield the ode shown in Figure 7(), with a total of 14 instrutions. On the

other hand, if instead of the single mathed instrution in B3 we had a sequene

of, say, 10 mathed instrutions, the savings inurred from ombining them into

a single blok within the abstrated proedure would outweigh the ost of the

additional instrutions needed to manage ontrol ow. As this example illustrates,

the minimal edit distane between the two bloks does not neessarily yield the

greatest savings: sometimes we an do better by ignoring some mathes. It is not

obvious that the dynami programming algorithm for omputing minimum edit

distane an be modi�ed in a straightforward way to aommodate this. Instead

we use a postproessing phase to \unmath" instrutions that inur too great a

ontrol ow penalty.

Even with the improvement of unmathing instrutions where a math is not

deemed pro�table, the ost of ontrol ow management signi�antly lowers the

overall bene�ts of proedural abstration based on partial mathes. In the example

shown in Figure 7, for example, at eah all site for the resulting proedure we

would need two additional instrutions|one to set the argument register identifying

the all site, another to arry out the ontrol transfer|for an overall total of 18

instrutions. By ontrast, the two original basi bloks shown in Figure 7(a) ontain

a total of 15 instrutions. Thus, despite the signi�ant partial math between these

two bloks, it is not pro�table in this ase to abstrat them out into a proedure.

In general, we found that proedural abstration based on partial mathes inurs a

large omputational ost, but yields overall ode size savings of around 0.4{0.6%.

We obtained similar results with a number of other variations on this sheme,

suh as fatoring out only ommon suÆxes or pre�xes of bloks. Beause of the

high omputational ost of this transformation and the low bene�t it produes, we
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deided not to inlude it within squeeze.

4. INTERACTIONS BETWEEN CLASSICAL OPTIMIZATIONS AND CODE FAC-

TORING

There is onsiderable evidene that (appropriately ontrolled) optimization an

yield signi�ant redutions in ode size. Compiler \folklore" has it that some

amount of peephole optimization an speed up the overall ompilation proess be-

ause of the resulting redution in the number of instrutions that have to be pro-

essed by later phases.

9

Cooper and MIntosh [1999℄ observe ode size redutions

of about 18% due to ompiler optimizations, while our own experiments, disussed

in Setion 5, indiate that enabling optimizations that do not inrease ode size

yield a ode size redution of about 20% on the average.

However, sine lassial ompiler optimizations are aimed primarily at inreas-

ing exeution speed, the redutions in size they produe are, in many ases, the

happy but oinidental outome of transformations whose primary goal is a redu-

tion in exeution time. Examples of transformations that an, in some situations,

lead to an inrease in ode size inlude mahine-independent optimizations suh as

partial-redundany elimination, proedure inlining, and shrink wrapping, as well

as mahine-dependent optimizations suh as instrution sheduling and instrution

ahe optimization, both of whih an result in the insertion of no-ops for align-

ment purposes. Even for transformations that lead to ode size redutions, using

exeution speed improvement as the primary goal of optimization an yield smaller

size redutions than might be possible otherwise. For example, in the loal fator-

ing transformation disussed in Setion 3.1, if an instrution an be hoisted either

upward or downward, it is preferable to hoist it downward, sine this an yield

greater size redutions. However, if our primary goal is inreasing exeution speed,

we would prefer to hoist it upward instead, so as to hide latenies.

This disussion does not take into aount interations between lassial opti-

mizations, whose primary goal is a redution in exeution time, and ode-fatoring

transformations, whose primary goal is a redution in ode size. As a simple exam-

ple, onsider the ode sequenes in the following two basi bloks:

Blok B

1

Blok B

2

load r1, 8(sp) load r1, 8(sp)

add r1, r2, r3 add r1, r2, r3

load r1, 12(sp) (*)

add r4, r5, r6 add r4, r5, r6

add r1, r4, r1 (*)

mul r3, r6, r3 mul r3, r6, r3

add r3, r5, r3 add r3, r5, r3

store r3, 16(sp) store r3, 16(sp)

As presented, these two bloks are di�erent, and annot be subjeted to proedu-

ral abstration into the same proedure. If the ompiler determines that the two

instrutions in blok B

2

marked as (*) are dead (e.g., due to ode-eliminating op-

timizations elsewhere that ause r1 to beome dead at the end of blok B

2

), and

eliminates them, the two bloks then beome idential and an be fatored out into

9

We believe this observation is due to W. A. Wulf.
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a proedure. However, if the ompiler does an even better job of optimization,

and is able to �nd a free register in blok B

1

that allows it to eliminate the load

instrution in that blok, the two bloks again beome di�erent and annot be ab-

strated into a proedure. Notie that in the latter ase, the ompiler's deision

to eliminate the load instrution is a loally good deision|it redues ode size by

one instrution and is likely to improve speed|but, from the standpoint of ode

ompation, not suh a good deision globally.

Interations suh as these give rise to a phase-ordering problem between size-

oriented and speed-oriented transformations. One possible way to deal with this

would be to iterate the transformations to a �xpoint. However, this is not a sat-

isfatory solution, beause transformations suh as ode fatoring require a lot of

ode sequene omparisons to identify repeated instrution sequenes that an be

fatored out, and therefore are quite expensive; iterating over them is likely to be

so expensive as to be impratial. We urrently do not do perform suh iteration.

5. EXPERIMENTAL RESULTS

To evaluate our ideas, we used the eight SPEC-95 integer benhmarks, as

well as six embedded appliations, adpm, epi, gsm, mpeg2de, mpeg2en,

and rasta, obtained from the MediaBenh benhmark suite from UCLA

(http://www.s.ula.edu/~lee/mediabenh). We evaluated squeeze on ode

obtained from two di�erent C ompilers: the vendor-supplied C ompiler  V5.2-

036, invoked as  -O1, and the GNU C ompiler g version 2.7.2.2, at optimization

level -O2. The programs were ompiled with additional ags instruting the linker

to retain reloation information and to produe statially linked exeutables.

10

The

optimization level hosen for eah ompiler was seleted to allow \standard" op-

timizations exept for those, suh as proedure inlining and loop unrolling, that

an inrease ode size. At optimization level -O1, the vendor-supplied ompiler 

arries out loal optimizations and reognition of ommon subexpressions; global

optimizations inluding ode motion, strength redution, and test replaement; split

lifetime analysis; and ode sheduling; but not size-inreasing optimizations suh as

inlining; integer multipliation and division expansion using shifts; loop unrolling;

and ode repliation to eliminate branhes. Similarly, at the -O2 level of optimiza-

tion, the g ompiler arries out most supported optimizations that do not involve

a spae-speed trade-o�. In partiular, loop unrolling and funtion inlining are not

arried out.

The baseline for our measurements is ode optimized by the ompiler as dis-

ussed above, but with unreahable ode and no-ops removed and pro�le-guided

ode layout|whih an improve performane signi�antly, but is not arried out

by either of the ompilers we used for our experiments|arried out. This elimi-

nates library routines that are not referened by the program but whih get linked

into the program beause of referenes to other routines in the library, and ex-

ludes size redutions that ould be trivially obtained by a traditional ompiler.

We inlude pro�le-direted ode layout in the baseline to allow a fair omparison:

10

The requirement for statially linked exeutables is a result of the fat that squeeze relies on the

presene of reloation information for its ontrol ow analysis. The Tru64 Unix linker ld refuses

to retain reloation information for exeutables that are not statially linked.
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Table I. Code Size Improvements Due To Di�erent Transformations

Transformation Savings (%)

redundant omputation elimination 34.14

Basi blok and region abstration 27.42

Useless ode elimination 22.43

Register save/restore abstration 9.95

Other inter-proedural optimizations 6.06

squeeze arries out this optimization, and we do not want the resulting performane

improvements to unduly inate the exeution speed of the resulting exeutables.

To obtain instrution ounts, we �rst disassemble the exeutable �les and disard

unreahable ode and no-op instrutions. This eliminates library routines that are

linked in but are not atually alled, as well as any no-op instrutions that may have

been inserted by the ompiler for instrution sheduling or alignment purposes. To

identify unreahable ode, we onstrut a ontrol ow graph for the entire program

and then arry out a reahability analysis. In the ourse of onstruting the ontrol

ow graph, we disard unonditional branhes. We reinsert those that are neessary

after all the ode transformations have been arried out: during ode layout, just

before the transformed ode is written out. To get aurate ounts, therefore, we

generate the �nal ode layout in eah ase (i.e., with and without ompation) and

ount the total number of instrutions.

5.1 Code Size

The overall ode size redutions ahieved using our tehniques are summarized in

Figure 8. The orresponding raw data are given in Debray et al. [2000℄. Figure

8(a) shows the e�ets of squeeze on ode ompiled using the vendor-supplied C

ompiler , while Figure 8(b) shows the e�ets of squeeze on ode ompiled using

the GNU C ompiler g. The olumns labeled \Unoptimized" refer to programs

ompiled at optimization level -O0, where no optimization is arried out, and serve

as a referene point to indiate how muh ode size redution is realized using only

optimizations arried out by the ompiler, while the olumns labeled \Base" refer to

ode optimized at the appropriate level, as disussed above, with unreahable ode

and no-ops removed. It an be seen from Figure 8 that by using lassial ompiler

optimizations, eah of these ompilers is able to ahieve signi�ant improvements

in ode size ompared to the unoptimized ode:  obtains a size redution of just

over 10% on the average, while g is able to ahieve an average size redution

of about 20%. More importantly, however, it an be seen that, even when given

the already optimized exeutables as input, squeeze is able to ahieve signi�ant

further redutions in size. For the -ompiled programs it ahieves an average size

redution of just over 30%, while for the g-ompiled programs the average size

redution is a little over 28%. The greatest redution in size is about 40% for the

adpm program, while the smallest is about 15{17% for the go program.

Table I gives a breakdown of the average ontribution of di�erent kinds of ode

transformations toward the ode size redutions we ahieve. Four lasses of transfor-

mations aount for most of these savings. About a third of the savings omes from
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Fig. 8. E�ets of ompation on ode size (normalized).

the elimination of redundant omputations of the global pointer register gp; about

27% omes from \ordinary" proedural abstration; arhiteture-spei� abstra-

tion of register save/restore sequenes aounts for another 10%; and useless-ode

elimination aounts for about 22% of the savings. (Reall that our baseline pro-

grams have already had unreahable ode and no-ops removed. The �gure given

here refers to ode that subsequently beomes useless, due to interproedural opti-

mization, as disussed in Setion 2.1.) The remainder of the savings arise due to a

variety of interproedural optimizations.

We also measured the extent to whih basi bloks of di�erent sizes ontribute

to the overall savings due to proedural abstration. For small basi bloks, the

savings per blok abstrated tend to be small, but the likelihood of �nding other

similar bloks, and thereby inreasing the total resulting savings, is large. The
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Fig. 9. Contribution to proedural abstration savings for basi bloks of di�erent sizes.

opposite is true for large bloks: eah basi blok that is abstrated arues a

signi�ant savings, but the likelihood of �nding similar or idential bloks that an

be abstrated is not as high. The distribution of the average savings we observed

for our benhmarks is shown in Figure 9. It an be seen that small bloks aount

for a signi�ant amount of the savings: about 7% of the savings omes from bloks

ontaining just two instrutions, while lose to 15% omes from bloks ontaining

three instrutions. Beyond this the savings generally drop o� as the number of

instrutions inreases, exept for a large bump at basi bloks of size 10. The reason

for this, it turns out, is that very often there is a large number of return bloks that

restore all the allee-saved registers and the return address register from memory,

dealloate the stak frame, and then return from the funtion. These ations require

10 instrutions on the proessor we used. The ontribution of large basi bloks|

those exeeding 12 instrutions in length|is, on the average, quite small, even

though oasionally we are able to abstrat bloks that are quite long. (In the g

and vortex benhmarks, basi bloks of up to 25 instrutions are abstrated. In the

rasta benhmark, suh bloks an be up to 44 instrutions long.)

As mentioned earlier, our experiments use statially linked exeutables, where

the ode for the library routines is linked into the exeutable by the linker prior to

ompation. It is possible that library ode is more (or less) ompressible than user

ode. This ould happen, for example, if the libraries are ompiled using di�erent

ompilers or ompiler optimization levels. It is desirable to identify, therefore, the

extent to whih the presene of library ode inuenes our results. For example, if

it turns out that library ode is highly ompressible while user ode is not, then our

results would not be readily appliable to exeutables that are not statially linked.

To this end, we instrumented squeeze to reord, for eah addition or deletion of ode

during its run, the funtion(s) with whih the size hange should be assoiated. For

the lassial optimizations implemented within squeeze, this is straightforward. For

proedural abstration, we use the following approah. Suppose that n di�erent

instanes of a partiular ode fragment were abstrated into a proedure, resulting

in a net savings in ode size of m, then the funtion ontaining eah of these in-

stanes is redited with a savings of m=n instrutions (not neessarily an integral

quantity). We then use a list of funtions in the user ode, obtained using a modi-
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Fig. 10. Contributions to ode size redution: User ode versus libraries.

�ed version of the l ompiler [Fraser and Hanson 1995℄, to estimate the total size

of user ode and the ode savings attributable to it. These measurements do not

aount for indiret e�ets of having the library ode available for inspetion, suh

as improved preision of dataow analyses, whih may give rise to additional op-

portunities for optimization. Nevertheless, this information is useful for obtaining

qualitative estimates of the inuene of library ode on our overall numbers. Our

results are shown in Figure 10. The bars labeled \User ode" represent the fration

of instrutions in user ode, relative to the total number of user ode instrutions,

that were deleted in the proess of ode ompation, while those labeled \Libraries"

give the orresponding �gures for library ode. For both the user ode and libraries,

the amount of redution in ode size typially ranges from around 25% to around

30%, with an average redution of about 27% for user ode and about 26% for

library ode.

11

There are a few programs (li, perl, vortex, adpm) where the user

ode is notieably more ompressible than the libraries, and a few others (go, gsm,

rasta) where the libraries are more ompressible. In general, however, the user and

library ode are more or less omparable in their ontribution to the overall ode

size redution measured.

5.2 Code Speed

One intuitively expets the programs resulting from the ode ompation tehniques

desribed here to be slower than the original ode, primarily beause of the addi-

tional funtion alls resulting from the proedural abstration that ours. A more

areful onsideration indiates that the situation may be murkier than this simple

analysis suggests, for a number of reasons. First, muh of the ode size redution is

due to aggressive interproedural optimizations that also improve exeution speed.

Seond, transformations suh as pro�le-direted ode layout, whih need not have a

large e�et on ode size, an nevertheless have a signi�ant positive e�et on speed.

On the other hand, on a supersalar proessor suh as the Alpha 21164, slow-downs

an our in the ompressed ode for reasons other than proedural abstration,

e.g., due to the elimination of no-ops inserted by the instrution sheduler in order

11

These numbers refer to the ontrol ow graph prior to ode layout, i.e., before unonditional

branhes are added while linearizing the graph.
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to align the instrutions so as to inrease the number of instrutions issued per

yle.

To determine the atual e�et of our transformations on our benhmarks, we

ompared the exeution times of the original optimized exeutables with those

resulting from the appliation of squeeze to these exeutables. Exeution pro�les,

in the form of basi blok exeution ounts, were obtained for eah program using

pixie, and these were fed bak to squeeze during ode ompation. The SPEC

benhmarks were pro�led using the SPEC training inputs and subsequently timed

on the SPEC referene inputs. For eah of the remaining benhmarks, we used the

same input for both pro�ling and subsequent timing. The timings were obtained on

a lightly loaded Compaq Alpha workstation with a 300-MHz Alpha 21164 proessor

with a split primary diret mapped ahe (8 KB eah of instrution and data

ahe), 96 KB of on-hip seondary ahe, 2 MB of o�-hip seondary ahe, and

512 Mbytes of main memory, running Tru64 Unix 4.0. Our results are shown

in Figure 11. The orresponding raw data are given in Debray et al. [2000℄. In

eah ase, the exeution time was measured as the smallest time of 10 runs. The

olumns labeled \Original" refer to the exeution times of the inputs optimized

at the appropriate level for eah ompiler, as disussed earlier, but without the

elimination of unreahable ode and no-ops. These are provided as a referene

point. The olumns labeled \Base" refer to exeutables obtained by removing

unreahable ode and no-ops from the original exeutables and then performing

pro�le-direted ode layout. The exeution times of the exeutables produed by

squeeze orrespond to the olumns labeled \Squeezed."

The results of our timing experiments indiate that it is by no means a foregone

onlusion that squeezed ode will be slower than original ode. For many of our

benhmarks, the squeezed ode runs signi�antly faster than the original. For

example, for the ompress benhmark ompiled using , the squeezed exeutable

is about 11% faster than the base and original exeutables, and using g, it is

about 23% faster than the base and original exeutables. For m88ksim ompiled

using , the squeezed exeutable is about 35% faster than the base and about

36% faster than the original, and using g, it is about 30% faster than both the

base and original. For perl ompiled using , it is about 28% faster than the base

and about 22% faster than the original, and using g, it is about 13% faster than

the base and original. Only two programs su�er slow-downs as a result of ode

ompation: vortex and epi, both under the g ompiler. The former slows down

by about 10%, the latter by about 23%. The reasons for these slow-downs are

disussed in Setion 5.3. Overall, for the set of benhmarks onsidered, the average

speedup, ompared to both the base and original programs, is about 16% for the

-ompiled exeutables and about 10% for the exeutables obtained using g. In

other words, ode ompation yields signi�ant speed improvements overall, and

the ompressed ode performs favorably even when the performane of the original

ode is enhaned via pro�le-guided ode layout. The reasons for this, explored

in Setion 5.3, are generally that for most of our benhmarks, the squeezed ode

experienes signi�ant dereases in the number of instrution ahe misses and the

average amount of instrution-level parallelism that an be sustained.
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Fig. 11. E�ets of ompation on exeution time (normalized).

5.3 Low-Level Dynami Behavior

To better understand the dynami behavior of programs subjeted to ode om-

pation, we examined various aspets of their low-level exeution harateristis.

Our results, whih are summarized in Figure 12, were obtained using hardware

ounters on the proessor, in eah ase using the smallest of three runs of the

program.

5.3.1 Total Instrutions Exeuted. Code size redutions during ode ompation

ome from two soures: interproedural optimization and ode fatoring. Some in-

terproedural optimizations redue the number of instrutions exeuted: for exam-

ple, the elimination of unneessary gp register omputations, elimination of no-ops

inserted for alignment and instrution sheduling, dead-ode elimination, and inlin-

ing of proedures alled from a single all site. Other optimizations, in partiular

the elimination of unreahable ode, have no e�et on the number of instrutions

exeuted. Code fatoring, on the other hand, leads to the exeution of additional
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Fig. 12. Low-level dynami behavior.

branh instrutions for the proedure alls and returns, and so always results in an

inrease in the number of instrutions exeuted.

Figure 12(a) shows the relative number of instrutions exeuted by the original

and the squeezed programs, ompared to the base program. As one might ex-

pet, sine the only di�erene between the original and base programs is that the

base program has had unreahable ode and no-ops eliminated, the base program

always exeutes fewer instrutions than the original. Moreover, the di�erene be-

tween these|due entirely to eliminated no-ops|is typially not large, ranging from

about 1% to 9% and averaging about 4%. More interestingly, when we onsider the

ode generated by squeeze, we �nd that for many programs, the squeezed version
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exeutes fewer instrutions than the base programs. For these programs, the re-

dution in instrutions exeuted resulting from optimizations by squeeze o�set any

dynami inreases due to fatoring. For other programs, the e�ets of ode fator-

ing outweigh those due to optimizations, and result in a net inrease in the number

of instrutions exeuted. Overall, we �nd that for the benhmarks onsidered, the

squeezed versions of the ode obtained for  exeute about 3% fewer instrutions

on the average than the base versions, while for the g-ompiled binaries they

exeute a little over 3% more instrutions, on the average.

5.3.2 Instrution Cahe Misses. Sine modern CPUs are signi�antly faster

than memory, delivering instrutions to them is a major bottlenek. A high instru-

tion ahe hit-rate is therefore essential for good performane. Primary instrution

ahes, in order to be fast, tend to be relatively small and have low assoiativity.

This makes it advantageous to lay out the basi bloks in a program in suh a way

that frequently exeuted bloks are positioned lose to eah other, sine this is less

likely to lead to ahe onits [Pettis and Hansen 1990℄. However, ode fatoring

an undo the e�ets of pro�le-direted ode layout, by \pulling out" a ode frag-

ment into a proedure that annot be positioned lose to its all site. The problem

arises when, for example, we have two instanes of a repeated ode fragment that

are not lose to eah other but where both ode fragments are frequently exeuted.

If these ode fragments are fatored out into a proedure, there will be two fre-

quently exeuted all sites for the resulting proedure, and it may not be possible

to lay out the ode in a way that positions the body of the proedure lose to both

of these all sites. This an lead to an inrease in instrution ahe misses.

Figure 12(b) shows the e�et of ode ompation on instrution ahe misses. For

the -ompiled programs, the ompress benhmark experienes a large inrease in

the number of instrution ahe misses as a result of fatoring. For the binaries

obtained from g, two programs|ijpeg and vortex|su�er large inreases in the

number of ahe misses, while two others|g and go|experiene smaller but

nevertheless notieable inreases. The number of instrution ahe misses goes

down for the remaining programs; in a few ases|notably, ompress, li, m88ksim,

epi, and mpeg2de|quite dramatially. Overall, the squeezed programs inur 36%

fewer instrution ahe misses, on the average, for the -ompiled binaries, and 40%

fewer misses for the g-ompiled binaries, than the orresponding base programs.

5.3.3 Instrution-Level Parallelism. The Alpha 21164 proessor, on whih our

experiments were run, is a supersalar mahine that an exeute up to four in-

strutions per yle, provided that various sheduling onstraints are satis�ed. For

example, at most two integer and two oating-point instrutions an be issued in a

yle; and no more than one instrution in a group of simultaneously issued instru-

tions should try to aess memory or aess the same funtional unit. Instrutions

are fethed in groups of four, and eah suh group is then examined for opportuni-

ties for multiple issues by evaluating to what extent they satisfy these onstraints.

This means that it is possible for a plausible ode transformation, suh as the dele-

tion of a no-op instrution, to alter the instrution sequene in suh a way that

opportunities for multiple instrution issues are redued dramatially, with a orre-

sponding loss in performane (onversely, the judiious insertion of no-ops an lead

to an inrease in the level of instrution-level parallelism that an be exploited).
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To address this problem, squeeze arries out instrution sheduling after all other

transformations have been applied and the �nal ode layout has been determined.

Sine squeeze eliminates no-ops inserted by the ompiler for sheduling and align-

ment purposes, there is the potential for a signi�ant loss in instrution-level par-

allelism in the ode it produes. To evaluate whether this is the ase, we measured

the average number of instrutions issued per yle for the various exeutables. The

results are shown in Figure 12(). It an be seen that the elimination of no-ops

inurs a prie in the base program, where the average number of instrutions is-

sued per yle is slightly smaller (by about 1% for  and 0.5% for g) than the

original program. However, the instrution sheduler in squeeze is able to overome

this problem and, for almost all of the programs tested, is able to attain a higher

number of instrutions per yle. On the average, the instrutions issued per yle

in the squeezed programs, ompared to the base programs, improves by about 6%

for the -ompiled binaries and about 8% for the g-ompiled binaries.

5.3.4 Summary. As Figure 11 shows, two of the 14 benhmarks we used, vortex

and epi ompiled under g, su�er a slowdown as a result of ode ompation.

Their low-level exeution harateristis indiate the possible reasons for this. Like

many of the other programs, ode ompation auses an inrease in the total num-

ber of instrutions exeuted for both of these programs. While the other programs

are generally able to ompensate for this by improvements elsewhere, vortex su�ers

an inrease in instrution ahe misses, and epi su�ers a redution in the average

number of instrutions issued per yle. Some of the other programs inur degrada-

tions in some dynami exeution harateristis but are able to ompensate for this

with improvements in other harateristis. For example, ompress under  and

ijpeg under g, both of whih su�er dramati inreases in the number of instrution

ahe misses, are nevertheless able to eke out overall improvements in speed due to

a ombination of a redution in the total number of instrutions exeuted and|for

ijpeg ompiled with g|an inrease in the average number of instrutions issued

per yle.

5.4 The E�ets of Code Fatoring

Figure 13 shows the e�et of ode fatoring by itself on ode size and exeution

time. The raw data are given in Debray et al. [2000℄. The graphs ompare squeeze

performing all ode transformations exept for ode fatoring, against squeeze with

ode fatoring enabled. It an be seen that fatoring redues the size of the programs

by about 5{6%. An interesting aspet of this omparison is that the elimination

of ode due to various optimizations within squeeze has the e�et of reduing the

apparent eÆay of ode fatoring, sine ode that might otherwise have been

fatored is eliminated as useless or unreahable. The result of this is that the

greater the ode-shrinking e�ets of lassial optimizations, the smaller we �nd the

bene�ts due to fatoring.

Sine the smallest ode unit we onsider for proedural abstration is the basi

blok, our approah does not pik out and abstrat instrution sequenes that are

subparts of a blok. By omparison, suÆx-tree based approahes suh as those of

Cooper and MIntosh [1999℄ are able to abstrat out repeated-instrution sequenes

that are subsequenes of a blok. Despite this limitation in our approah to ode
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Fig. 13. Relative impat of ode fatoring on ode size and exeution time.

fatoring, the relative size redutions we obtain via fatoring are essentially the

same as those of Cooper and MIntosh. A possible explanation for this is that

the ability to abstrat out subsequenes within a basi blok is likely to make a

di�erene only for large basi bloks, and the proportion of suh bloks generally

tends to be small in most programs.

As one would expet, fatoring auses an inrease in the number of instrutions

exeuted. On the average, this results in an inrease in exeution time of about 4%

for the -ompiled binaries, and about 10% for the g-ompiled binaries. Some

g-ompiled binaries experiene signi�ant slow-downs, with vortex slowing down

by about 37%, epi by about 23%, and perl by about 18%.

6. CONCLUSIONS

This artile fouses on the problem of ode ompation to yield smaller exeuta-

bles. It desribes a \whole-system" approah to the problem, where the use of

aggressive interproedural optimization, together with proedural abstration of

repeated-ode fragments, yields signi�antly greater redutions in ode size than

have been ahieved to date. For the identi�ation and abstration of repeated ode
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fragments, it departs from lassial suÆx-tree-based approahes. Instead, it uses

information already available in most ompilers, suh as the ontrol ow graph and

dominator/postdominator trees. Beause it does not treat the program as a simple

linear sequene of instrutions, it an be more exible in its treatment of what ode

fragments may be onsidered \equivalent." This simpli�es the implementation and

sets up a framework for ode ompation that an be more exible in its treatment

of what ode fragments are onsidered \equivalent." This results in a system that

is able to obtain onsiderably greater ompation, even on optimized ode, than

previous approahes, without inurring signi�ant performane penalties.

APPENDIX

A. THE LOCAL REGISTER-RENAMING ALGORITHM

Suppose we want to rename the registers in a basi blok B

from

, if possible, to make

it idential to a blok B

to

. Pseudoode for the algorithm used by squeeze for this is

shown in Figure 14. For simpliity of exposition, we assume that instrutions are

of the form reg

3

= reg

1

op reg

2

. The ith operand of an instrution I is given by

I:Op[i℄. We assume that operands 1 and 2 are the soure operands, and operand

3 is the destination operand. In addition, eah instrution I has �elds I:oldOp[i℄

that are used to keep trak of the operand register before renaming. These �elds

are used to undo the renaming if neessary, and are all initialized to ?. The

algorithm maintains two global arrays, InSubst and OutSubst, that keep trak of

register moves that have to be inserted at the entry to and exit from the blok,

respetively, if the renaming is suessful. Eah element of these arrays is initialized

to ?.

The main routine that arries out the renaming is RenameBlok, illustrated in

Figure 14. The basi idea is to work through eah instrution in B

from

and try

to rename its operands to make it idential to the orresponding instrution in

B

to

without violating any semanti onstraints. If this annot be done, or if the

total number of move instrutions that must be inserted before and after the blok

exeeds the savings that would be obtained from proedural abstration of the

blok, the renaming is abandoned. In this ase, ontrol is transferred to the label

bailout, where the renaming of eah instrution in the blok is undone.

The pseudoode for renaming individual operands is shown in Figure 15. The idea

is to reord the original value of the operand in the appropriate oldOp �eld of the

instrution being renamed, rename the operand, and then propagate this renaming

forward in the basi blok until the register that is being renamed beomes rede�ned

or the end of the blok is reahed.
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funtion RenameBlok(B

from

, B

to

)

begin

if NumInstr(B

from

) 6= NumInstr(B

to

) return fail;

n := NumInstr(B

from

);

LiveIn := fr j r is live at entry to B

from

g;

LiveRegs := fr j r is live at entry to B

from

g;

NumMoves := 0;

SavedRegs := fr j r is a allee-saved register that is saved by the funtion ontaining B

from

g;

Forbidden := LiveRegs [ fr j r is allee-saved and r 62 SavedRegsg;

for i := 1 to n do

ins

from

:= B

from

[i℄ � `reg

from

3

= reg

from

1

op reg

from

2

';

ins

to

:= B

to

[i℄ � `reg

to

3

= reg

to

1

op reg

to

2

';

if (ins

from

6= ins

to

) then

for j 2 f1; 2g do

if reg

from

j

6= reg

to

j

and reg

from

j

2 LiveIn then

if (InSubst[reg

from

j

℄ 6= ?) goto bailout;

InSubst[reg

from

j

℄ := reg

to

j

;

NumMoves += 1;

�

if (ReplaeOp(j; ins

from

; ins

to

; LiveIn) = fail) goto bailout;

od

if the de�nition ins

from

reahes the end of B

from

then

if the de�nition ins

to

does not reah the end of B

to

goto bailout;

OutSubst[reg

from

3

℄ := reg

to

3

;

NumMoves += 1;

�

if (ReplaeOp(3; ins

from

; ins

to

;Forbidden) = fail) goto bailout;

if (ins

from

6= ins

to

) goto bailout;

LiveIn := LiveIn � freg

from

3

g;

LiveRegs := (LiveRegs � freg

from

3

g) [ freg

to

3

g;

�

od

if (NumMoves + 1 < n) then /* the `+1' is for the bsr that will be added */

InsertMoves(B

from

; InSubst; OutSubst);

return suess;

�

bailout:

for i := 1 to n do

ins

from

:= B

from

[i℄;

if (ins

from

:oldOp[1℄ 6= ?) then ins

from

:Op[1℄ := ins

from

:oldOp[1℄;

if (ins

from

:oldOp[2℄ 6= ?) then ins

from

:Op[2℄ := ins

from

:oldOp[2℄;

if (ins

from

:oldOp[3℄ 6= ?) then ins

from

:Op[3℄ := ins

from

:oldOp[3℄;

od

return fail;

end

Fig. 14. Algorithm for loal register renaming.
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funtion ReplaeOp(k, ins

from

, ins

to

, Forbidden)

begin

r

from

:= ins

from

:Op[k℄;

r

to

:= ins

to

:Op[k℄;

if (r

from

= r

to

) return suess;

if (r

to

2 Forbidden) return fail;

ins

from

:oldOp[k℄ := r

from

;

ins

from

:Op[k℄ := r

to

;

for eah instrution I after ins

from

to the end of the blok do

for j 2 f1; 2g do

if (I:Op[j℄ = r

from

) then

if (I:oldOp[j℄ 6= ?) return fail;

I:oldOp[j℄ := r

from

;

I:Op[j℄ := r

to

;

�

od

if (I:Op[3℄ = r

from

) break;

od

return suess;

end

funtion InsertMoves(B

from

; InSubst; OutSubst)

begin

if 9r : InSubst[r℄ 6= ? then

if B

from

has multiple predeessors then

reate a new basi blok B

0

and rediret all edges entering B

from

to enter B

0

instead;

add an edge from B

0

to B

from

;

else

B

0

:= B

from

;

�

for eah r

0

= InSubst[r℄ s.t. r

0

6= ? do

insert an instrution `r

0

:= r' in B

0

;

od

�

if 9r : OutSubst[r℄ 6= ? then

if B

from

has multiple suessors then

reate a new basi blok B

00

and rediret all edges out of B

from

to be out of B

00

instead;

add an edge from B

from

to B

00

;

else

B

00

:= B

from

;

�

for eah r

0

= OutSubst[r℄ s.t. r

0

6= ? do

insert an instrution `r

0

:= r' in B

00

;

od

�

end

Fig. 15. Pseudoode for operand replaement and move insertion.



38 � Saumya Debray et al.

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. 1985. Compilers|Priniples, Tehniques, and Tools.

Addison-Wesley, Reading, Mass.

Baker, B. S. 1993. A theory of parameterized pattern mathing: Algorithms and appliations

(extended abstrat). In Pro. ACM Symposium on Theory of Computing. ACM Press, New

York, N.Y., 71{80.

Baker, B. S. and Manber, U. 1998. Deduing similarities in Java soures from byteodes. In

Pro. USENIX Annual Tehnial Conferene. Usenix, Berkeley, CA, 179{190.

Bene

�

s, M., Nowik, S. M., and Wolfe, A. 1998. A fast asynhronous Hu�man deoder for

ompressed-ode embedded proessors. In Pro. International Symposium on Advaned Re-

searh in Asynhronous Ciruits and Systems. IEEE Computer Soiety, Washington, D.C.

Cooper, K. D. and MIntosh, N. 1999. Enhaned ode ompression for embedded RISC proes-

sors. In ACM Conferene on Programming Language Design and Implementation. ACM Press,

New York, N.Y., 139{149.

Debray, S., Evans, W., Muth, R., and De Sutter, B. 2000. Compiler tehniques for ode

ompation. Teh. Rep. 00-04, Dept. of Computer Siene, The University of Arizona. Mar.

Ernst, J., Evans, W., Fraser, C., Luo, S., and Proebsting, T. 1997. Code ompression.

In ACM Conferene on Programming Language Design and Implementation. ACM Press, New

York, N.Y.

Franz, M. 1997. Adaptive ompression of syntax trees and iterative dynami ode optimization:

Two basi tehnologies for mobile-objet systems. In Mobile Objet Systems: Towards the

Programmable Internet, J. Vitek and C. Tshudin, Eds. Number 1222 in Springer Leture Notes

in Computer Siene. Springer, Heidelberg, Germany, 263{276. Teh. Report 97-04, Department

of Information and Computer Siene, University of California, Irvine.

Franz, M. and Kistler, T. 1997. Slim binaries. Commun. ACM 40, 12 (De.), 87{94.

Fraser, C. and Proebsting, T. 1995. Custom instrution sets for ode ompression. Unpublished

manusript. http://researh.mirosoft.om/ toddpro/papers/pldi2.ps.

Fraser, C., Myers, E., and Wendt, A. 1984. Analyzing and ompressing assembly ode. In

Pro. of the ACM SIGPLAN Symposium on Compiler Constrution. Vol. 19. ACM Press, New

York, N.Y., 117{121.

Fraser, C. W. and Hanson, D. R. 1995. A Retargetable C Compiler: Design and Implementa-

tion. Addison-Wesley, Reading, Mass.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intratability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, New York, N.Y.

Knoop, J., R

�

uthing, O., and Steffen, B. 1994. Optimal ode motion: Theory and pratie.

ACM Trans. Program. Lang. Syst. 16, 4 (July), 1117{1155.

Muhnik, S. S. 1997. Advaned Compiler Design and Implementation. Morgan Kaufman, San

Franiso, CA.

Muth, R., Debray, S. K., Watterson, S., and Bosshere, K. D. 1998. alto : A link-time

optimizer for the DEC Alpha. Teh. Rep. 98-14, Dept. of Computer Siene, The University of

Arizona. De. To appear in Software Pratie and Experiene.

Pettis, K. and Hansen, R. C. 1990. Pro�le-guided ode positioning. In ACM Conferene on

Programming Language Design and Implementation. ACM Press, New York, N.Y., 16{27.

Proebsting, T. 1995. Optimizing an ANSI C interpreter with superoperators. In Pro. Symp.

on Priniples of Programming Languages. ACM Press, New York, N.Y., 322{332.

van de Wiel, R. 2000. The \Code Compation" Bibliography.

http://www.win.tue.nl/s/pa/rikvdw/bibl.html.

Zastre, M. J. 1993. Compating objet ode via parameterized proedural abstration. M.S.

thesis, Dept. of Computing Siene, University of Vitoria.


