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Abstract. It is often the case at runtime that variables and registers in pro-
grams are “quasi-invariant,” i.e., the distribution of thevalues they take on is very
skewed, with a small number of values occurring most of the time. Knowledge
of such frequently occurring values can be exploited by a compiler to generate
code that optimizes for the common cases without sacrificingthe ability to han-
dle the general case. The idea can be generalized to the notion of expression
profiles, which profile the runtime values of arbitrary expressions and can per-
mit optimizations that may not be possible using simple value profiles. Since this
involves the introduction of runtime tests, a careful cost-benefit analysis is nec-
essary to make sure that the benefits from executing the code specialized for the
common values outweigh the cost of testing for these values.This paper describes
a static cost-benefit analysis that allows us to discover when such specialization
is profitable. Experimental results, using such an analysisand an implementation
of low-level code specialization based on value and expression profiles within a
link-time code optimizer, are given to validate our approach.

1 Introduction

Knowledge that an expression in a program can be guaranteed to evaluate to some
particular constant at compile time can be profitably exploited by compilers via the
optimization known as constant folding [17]. This is an “all-or-nothing” transformation,
however, in the sense that unless the compiler is able to guarantee that the expression
under consideration evaluates to a compile-time constant,the transformation cannot be
applied. A similar situation holds in partial evaluation, where a variable has to be static
in order to permit specialization [15]. In practice, it is often the case that an expression at
a point in a program “almost always” takes on a particular value [6]. As an example, in
the SPEC-95 benchmarkperl, the functionmemmoveis called close to 24 million times.
The argument giving the size of the memory region to be processed has the value 1 in
70% of these calls. We can take advantage of this fact to direct such calls to an optimized
version of the function that is significantly simpler and faster. As another example, in the
SPEC-95 benchmarkli , a very frequently called function,livecar, contains aswitch
statement where one of the case labels, corresponding to thetypeLIST, occurs over
80% of the time. Knowledge of this fact allows the code to be restructured so that this
common case can be tested separately first, and so does not have to go through the
jump table, which is relatively expensive. As these examples suggest, if we know that
certain values occur very frequently at certain program points, we may be able to take
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advantage of this information to improve the performance ofthe program. Information
about the relative frequency of occurrence is given byvalue profiles: a value profile
for a variable or registerx at a program pointp is a (partial) probability distribution
on the values taken on byx when control reachesp during program execution. This
idea can be generalized to the notion ofexpression profiles, which profile the runtime
values of arbitrary expressions and can permit optimizations that may not be possible
using simple value profiles. Unfortunately, classical compiler techniques cannot take
advantage of knowledge of the distribution of values, and optimize for the common
case, in situations where a variable may take on multiple values at runtime. The idea
behind value-profile-based code specialization is to allowsuch optimization.

From a semantic perspective, the transformation we use is very simple. To specialize
a code fragmentC for a valuev of a registerr,1 we simply replaceC by the equivalent
code ‘if (r == v) then C elseC.’ Once this has been done, “ordinary” specializing and
optimizing transformations suffice to specialize thetrue-branch of this conditional to
the valuev of r. The resulting code has the structure

if (r == v) then hCi
r=v elseC

wherehCi
r=v represents the residual code ofC after it has been specialized to the value

v of r. The runtime test ‘if (r == v) . . . ’ is required since we cannot guarantee that
r will take on only the valuev at that point. This idea can be generalized to multi-
ple values: given a probability distribution on these values, we can use a collection of
tests such as that above, organized as an optimal binary search tree, to choose between
the specialized versions. For simplicity of discussion, wefocus on specialization for a
single value in this paper, since this illustrates the technical issues that arise.

Notice that this transformation is obviously semantics-preserving, can be applied
anywhere, to any variable or register and any value (subjectto any applicable type con-
straints), without requiring, for example, a binding-timeanalysis. This is the primary
strength of our approach, and it allows optimizations that would not be possible other-
wise; it is also our biggest weakness, because we have so little to guide us in exercising
the tremendous freedom that we are given. For example, notice that due to the runtime
test that has been introduced, the code resulting from specialization, shown above, is
actually less efficient than the original for values ofr other thanv. Thus, value-profile-
based specialization reduces cost of some execution paths,but the cost of other paths
increases. If this tradeoff is not assessed carefully, it can result in significant perfor-
mance degradation. In general, the technical issues that have to be addressed during
value-profile-based code specialization are as follows:

1. we have to determine the program point2 p where the specialization should begin
(this corresponds to the point where runtime tests on valueshave to be inserted, as
discussed above);

1 In general, specialization can be carried out based on the value of a register, variable, or mem-
ory location, or relationships between such values. To simplify the discussion, and because our
current implementation carries out specialization based on register values, we refer to register
values when discussing specialization.

2 For our purposes a “program point” refers to the points immediately before or after an instruc-
tion; this includes the entry and exit points of basic blocks.



2. we have to identify the registerr whose values we are interested in, and the partic-
ular value(s)v of this register that we specialize for;

3. we have to determine the actual code fragmentC that is to be subjected to special-
ization.

The primary contribution of this paper is a low-level staticcost-benefit analysis that
allows us to evaluate the runtime tradeoff mentioned above—where specialization can
reduce the runtime cost of some execution paths but increasethe cost of others—and
guide the specialization process. This analysis is crucial, since specializing a piece of
code for too many different values, or specializing code where the benefits of special-
ization are not high enough, can lead to a performance degradation. We then describe
details of how the analysis, specialization, and subsequent code optimization have been
automated and integrated into a link-time code optimizer (alto), and give experimental
results to validate our ideas.

2 Code Specialization

Value-profile-based code specialization is a three-step process:

1. identify program points and registers where specialization may be profitable using
basic block profiles;

2. obtain value and expression profiles for those program points;
3. use these profiles to carry out specialization for those program points where this is

deemed profitable

A specialization tripleis a triple of the form(p; r;v), wherep is a program point,r
is a register, andv is a value for that register. These triples identify the runtime tests that
have to be inserted in the context of value-profile-based specialization and the program
points where they must be inserted. Thespecialization regionof a triple(p; r;v) refers
to the region of code that is chosen for specialization; thisidentifies the code fragments
that appear in thethen- and else-branches of the runtime test corresponding to that
triple.

Section 2.1 describes a benefit analysis that is fundamentalto our approach. In Sec-
tions 2.2 through 2.4 we discuss the three steps mentioned above. Section 2.5 provides
an example illustrating our approach.

2.1 Estimating Benefits of Specialization

Our value profiling and specialization decisions are guidedby estimates of the benefit
that would be obtained from code specialization given the knowledge that the value of
a registerr is known at a program pointp. This estimate is denoted byBene�t(p; r).
There are two components to the computation of benefits:

(i) For each instructionI that uses the value ofr available atp, there may be some
benefit to knowing this value. The magnitude of this benefit will depend on the
type ofI , and is denoted bySavings(I ; r).



(ii) It may happen that knowing the value of an operand registerr of an instruction
I allows us to determine the value computed byI . In this case,I is said to be
evaluablegiven r, written Evaluable(I ; r). If I is evaluable givenr, the benefits
obtained from specializing other instructions that use thevalue computed byI for a
particular value ofr can also be credited to knowing the value ofr at p. The indirect
benefits so obtained from knowing the value ofr in instructionI are denoted by
IndirBene�t(I ; r).

If we know the values of all operands to an instruction, we cancompute the result
v of the instruction, and propagate this value to all instructions that usev. There is
therefore no need to execute this instruction at run-time. The savings obtained from
knowing the operand values for an individual instruction isessentially the latency of that
instruction (i.e., the number of cycles it takes to execute), if knowing the operand values
allows us to determine the value computed by that instruction, and thereby eliminate
that instruction entirely3 (our implementation uses latency figures for various classes of
operations based on data from the Alpha 21164 hardware reference manual):

Savings(I ; r) = if Evaluable(I ; r) then Lateny(I) else0.

Let Uses(p; r) denote the set of all instructions that use the value of register r that is
available at program pointp. Then the benefit of knowing the value of a registerr at
program pointp is given by the following:

Bene�t(p; r) = ∑
I2Uses(p; r)

(Freq(I)4�Savings(I ; r)+ IndirBene�t(I ; r))

IndirBene�t(I ; r) = if Evaluable(I ; r) then Bene�t(p0;ResultReg(I)) else0.

Here p0 is the program point immediately afterI , andResultReg(I) the register into
which I computes its result.

These equations for computing benefits propagate information from the uses of a
register to its definitions. They can be recursive in general, corresponding to a cycle
in the use-definition chain. The usual approach to solving recursive equations in the
context of program analysis is to use an iterative fixpoint computation (e.g., see [9]).
In our case, however, it is not obvious from a pragmatic standpoint that this is the right
thing to do. The reason for this is that propagating benefit information around a cycle
is meaningful only if we know,a priori, that the loop will be unrolled later (otherwise
we cannot specialize the loop body for values encountered ondifferent iterations of the
loop). When carrying out loop unrolling, however, it is essential to take into account
machine-level resources such as registers and the instruction cache: excessive unrolling
that does not consider these factors can result in severe performance degradation (e.g.,

3 The benefit estimation can be improved to take into account the fact that for some instructions,
knowing some of the operands of the instruction may allow us to strength-reduce the instruc-
tion to something cheaper even if its computation cannot be eliminated entirely. While our
implementation uses such information in its benefit estimation, we do not pursue the details
here due to space constraints.

4
Freq(I) refers to the dynamic execution frequency of the instruction.



see [11]). For this reason, the decision as to whether the loop should actually be un-
rolled is not made at the time of the cost-benefit computation, but later, based in part on
information obtained from value and expression profiling (see Section 3). If benefit in-
formation is propagated around the loop but the loop subsequently is not unrolled (e.g.,
due to cache considerations), we can get wildly optimistic benefit values. These values
can mislead the cost-benefit estimation and lead to the introduction of useless runtime
tests, thereby degrading performance.

We therefore have a chicken-and-egg problem: propagating information around cy-
cles when identifying candidates for value profiling requires knowledge of whether or
not loops will be unrolled; but the decision of whether or notto unroll a loop depends
upon, among other things, knowledge of value profiles. As a practical matter, it happens
that complex low-level analyses of machine code programs (as in our implementation)
and determination of value profiles are both quite expensive; this greatly limits our
choices in dealing with this circular dependence. The approach we take, therefore, is
one where we attempt to “do no harm:” we conservatively assume that loops will not
be unrolled when carrying out our benefit analysis, and therefore do not propagate in-
formation along loop back edges. This has the drawback that it can sometimes cause
us to underestimate the benefit that might actually have beenobtained if cycles had
been taken into account; as a result we could miss some opportunities for optimization.
Note, however, that this is conservative, in the sense that it will not insert runtime tests
or specialize code that is not worth specializing.

Our approach, therefore, is to obtain approximate solutions to the benefit equations
given above, where the approximation occurs in the handlingof loops as discussed
above. This is done as follows. First, let thedefining instructionof an instructionI ,
written defInst(I), be the (single) instructionJ such that knowing the value computed
by J into its destination register allows us to determine the value computed byI ; if
there is not a single such instruction, the defining instruction is undefined, denoted by
?.5 Use-definition chains are used to compute the defining instruction for an instruction
I � ‘ rc = ra� rb’ as follows:

(i) if the values of bothra andrb are statically known,defInst(I) =?;
(ii) otherwise, if the value of one of the operand registers is statically known, and there

is a single definitionJ for the other operand register that reachesI , thendefInst(I) =
J;

(iii ) otherwise, ifra = rb and there is a single definitionJ for ra that reachesI , then
defInst(I) = J;

(iv) otherwisedefInst(I) =?.

In case(i), all of the operands of an instructionI are known statically. This instruc-
tion will be specialized without relying on value profiles atall. For the purpose of value
profile based specialization, therefore, we do not considersuch instructions. A conve-
nient way to do this is by settingdefInst(I) to?. In case(iv), neither of the operands of
an instruction are known statically. We do not wish to propagate benefit from case(iv)

5 Our implementation introduces, at the entry to each basic block that has more than one prede-
cessor, a pseudo-instruction, similar to a SSAφ-function, that defines each register that is live
at that point and has more than one definition reaching it. Thenotion of defining instructions
extends to such pseudo-instructions in the obvious way.



instructions since they cannot be evaluated after knowing the value of a single defining
instruction.

The benefit for each instruction can now be computed as follows. Let Benefit(I),
whereI is an instruction, denote the valueBene�t(p; r), wherep is the program point
immediately afterI andr is the destination register ofI . First, we mark all instructions in
the program asunprocessed, and setBenefit(I) = 0 for each instructionI . The following
is then repeated until no new instruction can be marked asprocessed:

for each unprocessed instructionI do
/* memory operations are not specialized away */
if I is not a memory operationthen

J = defInst(I);
if J 6=? and all instructions dependent onI have been processedthen

Benefit(J) += Benefit(I) + Savings(I ; r),
wherer is the destination register ofJ;

markI asprocessed;
fi

fi
od

This algorithm will not process any instruction that is involved in such a cycle, since
Benefit(I) is added toBenefit(J) only after all of the instructions dependent onI have
been processed, i.e., after the value ofBenefit(I) has stabilized. This will cause benefit
information to not be propagated around loops, for the reasons discussed above. An
added benefit of such an approach is that of efficiency: disallowing information propa-
gation around cycles makes the code for estimating benefits simpler and faster.

2.2 Identifying Candidates for Specialization

In order to reduce the time and space overheads for value profiling as far as possible,
we attempt to identify candidate (program point, register) pairs for which specialization
could conceivably yield a performance improvement if we hada sufficiently skewed
runtime distribution of values. Once the benefits associated with each instruction have
been computed as described above, we only consider those instructions whose bene-
fit is equivalent to the elimination of at least a single instruction from a “hot” basic
block. The intent is to avoid the overheads associated with value profiling, and perhaps
specializing, instructions where this is unlikely to lead to a noticeable improvement in
performance. Notice that this does not mean that instructions considered for specializa-
tion must actually cause the elimination of instructions inhot basic blocks, but simply
that the savings incurred from specialization be large enough to be comparable to the
elimination of at least one instruction from a hot block. Employing this cost-benefit
analysis reduces the overhead of profiling significantly. Wediscuss this in more detail
in Section 4

Alto uses a two-stage profiling scheme where basic block profiles are first generated,
and these are used to determine which value profiles to compute. At this point, therefore,
we have basic block execution counts. To determine the basicblocks that are “hot,”
i.e., executed sufficiently frequently, we start with a value φ in the interval (0,1] and
determine the largest execution frequency thresholdN such that the set of basic blocks



that have execution frequencies exceedingN together account for at least the fraction
φ of the total number of instructions executed by the program (as indicated by its basic
block execution profile). For the purposes of value-profile-based specialization, we use
an empirically derived value ofφ = 0:50, i.e., the hot basic blocks consist of those that
allow us to account for at least 50% of the instructions executed at runtime.

2.3 Value Profiling

Given a set of (program point, register) pairs to be value-profiled, we use a scheme
based on that of Calderet al. [6] for obtaining value profiles. As mentioned earlier, our
implementation of value profiling obtains profiles for registers only, not for memory
locations. The actual profiling is carried out by a function created for this purpose. This
function, which is added to the program as part of the instrumentation code and invoked
at the profiling points, compares the value of the register inquestion with the contents of
a fixed-size table of previously encountered values. If the current value is already in the
table, the count of that value is incremented. Otherwise, ifthe table is not full, the value
is added to the table and its count initialized to 1. If the table is full the value is ignored.
Periodically, the table is cleaned by evicting the least frequently used values from the
table: this allows new values to enter the table. We also keeptrack of the total number of
times execution passes through the pointp by incrementing a counter associated with
that point.

2.4 Carrying out the Specialization

Code specialization involves two steps: (1) identificationof the particular specialization
triples, and the corresponding specialization regions, that should be specialized; and (2)
transforming the program appropriately.

The benefit computation described in Section 2.1 is used to identify the specializa-
tion triples for which code specialization is worthwhile. Once the actual value profile
has been obtained, we know the distribution of the values taken on at the points that
have been profiled and can determine the probabilityprob(v) with which a valuev oc-
curs. The benefits of specialization have to be weighed against the costs incurred due
to runtime tests. The cost of such a test depends on the register and value being tested:
e.g., testing for the value 0 is usually fairly cheap, while testing for a non-zero floating
point constant may incur a load from memory. The cost of testing whether a registerr
has a valuev is denoted byTestCost(r;v). Specializing at a program pointp for a value
v of a registerr is then worthwhile only if the marginal benefit, given by

Bene�t(p; r)�prob(v)�TestCost(r;v)�Freq(p),

is equivalent to at least one hot instruction (cf. the discussion in Section 2.2).

Once we have identified the set of specialization triples forwhich specialization is
worthwhile, we have to choose which of these should actuallybe specialized. An issue
that must be addressed here is that the specialization regions for different such triples
may overlap. This is illustrated by the following instruction sequence:

ld r5, 0(r4) # r5 := load from 0(r4)
and r5, 0xff, r6 # r6 := r5 & 0xff



Suppose that we have value profiled registerr5 after theld instruction and regis-
ter r6 after theand instruction, and that based on the cost benefit analysis, both of
these instructions are candidates for specialization. However, the program points are
dependent—r6 is computed fromr5—and their specialization regions overlap. De-
pending on the circumstances, it might be better to specialize based on theld instruc-
tion because more instructions use the result of this instruction; in other situations, it
might be better to specialize based on theand instruction because its value distribution
might be more skewed. In such cases, we specialize only the more promising one, based
on the cost benefit analysis; in the case of a tie, the program point that dominates the
other is chosen (as discussed below, overlaps are not possible unless one of the points
dominates the other).

Given a set of specialization triples, we have to determine the specialization region
associated with each of them. The basic intuition is that given a triple(p; r;v), we want
to identify the instructions that, directly or indirectly,use the value ofr available atp,
and so might potentially benefit from specialization. We first make precise the notion
of an instruction using a value “directly or indirectly.” Given a program pointp and
registerr, we say that(p; r) influencesan instructionI if (i) I uses the value ofr at p; or
(ii) there is an instructionJ at a program pointp0 such that:J defines a registerr 0; (p; r)
influencesJ; and (p0; r 0) influencesI . Then, given a triple(p; r;v), the specialization
region for this triple is defined to be the smallest set of basic blocksRsuch that

– R contains the basic blockBp containingp is in R;
– if (p; r) influences an instructionI occurring in a basic blockBI , andp dominates

BI , thenBI is in R; and
– if B is in R, B 6= Bp, andB0 is a (immediate) intra-procedural predecessor ofB in

the control flow graph of the program, thenB0 is in R.

It is not hard to see that, given a specialization triple(p; r;v), the basic blockBp contain-
ing p dominates every block in the specialization region of this triple. This is necessary
for correctness: we have to ensure that any execution path that can reach the specializa-
tion region of this triple must pass through the test inserted at p.

There are two issues that are not addressed by this definitionof specialization re-
gions. The first is that, given a triple(p; r;v), it may happen that(p; r) influences an
instructionI but the basic blockBI containingI is not in the specialization region of
this triple becausep does not dominateBI . This problem can be remedied by duplicat-
ing code so as to makep dominateBI . This is an issue that is, by and large, orthogonal
to the main focus of this paper, and so is not pursued further here. The second is that,
as given, this definition does not take into account the size of a specialization region
relative to the benefits obtained from its specialization. It may happen that an instruc-
tion I in a blockBI that is very far away from the pointp is influenced by the value of
a registerr at p. If we includeBI in the specialization region, it is necessary to also in-
clude all of the blocks betweenp andBI , even though these blocks may not benefit from
specialization. This could, in extreme cases, give rise to large specialization regions in
order to include distant influenced instructions. This can be handled using a notion of
densityof influenced instructions, analogous to the notion of density of case labels used
for code generation forswitch statements [5], to limit the specialization regions to
code that contains a sufficiently high proportion of instructions that would benefit from
the specialization. Our current implementation does not address this issue.



The final step is to actually carry out the code transformations for specialization.
The transformations that are effected during specialization can be quite involved. Since
much of this functionality is already available elsewhere in our system in the routines
that implement various analyses and optimizations, we attempt to have as little code
as possible for transformations specifically geared towards value-profile-based special-
ization. Our goal is to transform the code just enough, at this point, that the desired
specialization will subsequently happen in the course of “ordinary” optimizations. We
have only two transformations specific to value-profile-based specialization:

1. The basic transformation, aimed at transferring controlto specialized code when
a register has the appropriate value, is implemented as follows. When specializing
for a triple (p;v; r), we simply create a copyC0 of the specialization regionC for
that triple and insert a test at program pointp that testsr and branches to the copy
if r ’s value isv.

2. When value profiling indicates that the iteration count ofa (hot) loopC has a suffi-
ciently skewed distribution, we may generate a specializedversionC0 of that loop
that has been unrolled some number of times. The specific number of unrollings is
based on the sizes of the bodies of the loop under consideration as well as those of
any loops in which it is nested, together with the size of the instruction cache, so
as to avoid excessive unrolling that could adversely affectthe i-cache utilization of
the program (e.g., see [11]). Control is transferred to the unrolled loop by testing
the registerr controlling the number of iterations against a particular valuev, as for
the basic transformation above.

Once the code has been transformed as described, the information thatr has the value
v when control reaches the cloned regionC0, but not the original code fragmentC, is
propagated during the course of conditional constant propagation [19]; The actual spe-
cialization of the code then takes place in the course of normal optimizations, which
exploit the additional information that is available aboutthe value ofr—and, possibly,
other computations that use the value ofr—to effect a variety of optimizing transforma-
tions. Using this approach we are able to reuse much of the optimization infrastructure
of our system for value-profile-based specialization, leading to a simpler system that is
easier to implement, debug, and maintain.

Given a specialization triple(p; r;v), a variety of idioms may be used to implement
the test inserted at the program pointp, depending on the magnitude of the valuev
and whether or not there is a free register available. If a free registerr 0 is available, we
simply compute the difference ofr andv into r 0, then conditionally branch to the cloned
code if r 0 is zero. If there are no free registers available, ifv is small enough to be an
immediate operand the following pair of instructions is inserted:

subq r, v, r # r := r - v
beq r, Bclone # if (r = 0) goto Bclone;

# else fall through to original code

To compensate for the effect of thesubq instruction, we add the instruction ‘addq
r, v, r’ at the entry to both the original specialization region andits clone. Ifv is too
big to be an immediate operand, one or more instructions may be needed to compute
it into a register; however, the cost of doing so will have been taken into account in
TestCost(r;v).



2.5 An Example

As an example illustrating our approach, we consider the function memmove(), from
the SPEC-95 benchmarkperl. The frequently executed portion of its control flow graph
is shown in Figure 1(a), with the execution count of each basic block shown in paren-
theses on the right of the block. Instructions that (directly or indirectly) use the value
of the third argument, passed in register$18, are shown in italics. The distribution of
values for this register is shown in Figure 1(b): notice thatover 70% of the time, this
register has the value 1.6 The instructions along the critical path of the function that are
influenced by the value of register$18 are shown in italics in Figure 1. We focus on
the transformations that occur along the critical path of this function in the course of
specialization, since these have the largest impact on performance:

– [ +2 instructions ] The most commonly occurring value for this register is 1, and
value-profile-based specialization introduces a test for this value in block B0 (see
Figure 1(c)).

– [ �3 instructions ] Constant propagation then causes the elimination of the follow-
ing instructions: ‘beq $18, ...’ from block B1; and the pair ‘cmpule $1,
0x08, $1’, ‘ beq $1, ...’ from block B4 (a similar pair is eliminated from
block B7).

– [�2 instructions ] The elimination of the ‘beq $1, ...’ instruction from block
B4 causes the deletion of the control flow edge out of B4 away from the critical path
(i.e., into the oval marked “[ 14 basic blocks ]”). This has two effects. First, it causes
register$20 to become dead at the end of block B4, which allows the deletion of
the instruction ‘addq $17, $18, $20’ in B4. Second, it causes the instruction
‘and $16, 0x07, $2’ to become partially dead in block B3; partial dead code
elimination then moves it out of B3, and hence out of the critical path.

– [�1 instruction ] For the instruction pair ‘cmpult $1, $18, $6’, ‘ beq $6,
...’ in block B2, given that the value of register$18 is 1, the instruction ‘cmpult
$1, $18, $6’, which does an unsigned comparison of registers$1 and$18,
will yield a value of 1 only if register$1 is 0. The optimizer recognizes this and
replaces this pair of instructions by the single instruction ‘beq $1, ...’.

– [ �1 instruction ] Constant propagation of the value of register $18 also succeeds
in deleting amskql instruction (a bit mask instruction used in byte manipulations)
from block B5.

The resulting code is also subjected to other transformations, such as code hoisting
and basic block fusion, that are enabled by the transformations described above. The
resulting code is shown in Figure 1(c). The overall effect ofthese transformations is to
reduce the length of the critical path through this functionfrom 37 instructions to 32
instructions, a reduction of 13.5%.

6 The basic block execution counts given in Figure 1(a), as well as the value distribution shown
in Figure 1(b), correspond to the training inputs of the SPEC-95 benchmarks, since that is what
a compiler would use to reason about the program. Those mentioned in Section 1 refer to the
SPEC reference inputs.



[ 14 basic blocks ]

[ 78 instrs ]

[ 7 basic blocks ]

[ 44 instrs ]

ret        ($ra)

[ 22 instrs ]

lda       $0, 0x0($16)

beq      $1, ...
and      $16, 0x07, $2
and      $1, 0x07, $1
ldq_u   $3, 0x0($17)
xor       $17, $16, $1

subq    $16, $17, $1

beq      $18, ...

cmpult $1, $18, $6
addq   $17, $18, $20

cmpule $18, 0x08, $1
addq    $17, $18, $20
beq      $1, ...

(2.87M)

ldq_u   $3, 0x0($17)

cmpule $18, 0x08, $1
addq    $16, $18, $19
addq    $17, $18, $20
beq      $1, ...

ret        ($ra)

(3.85M)

(3.84M)

(3.84M)
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beq      $6, ...
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B2
lda       $0, 0x0($16)
subq    $16, $17, $1
lda       $20, 0x1($17)
ldq_u   $3, 0x0($17)
beq      $1, ...

cmpeq $18, 0x1, $0
beq      $0, ...

and      $1, 0x07, $1

B3
cmpule $1, $31, $6
xor       $17, $16, $1

beq      $1, ...

ret        ($ra)

B5

[ 21 instrs ]

[ 176 instrs ]

[ 32 basic blocks ]

B0

(b) value distribution of reg.$18 (c) After transformation

Fig. 1. A specialization example: the functionmemmove()(from the SPEC-95 benchmarkperl)



3 Expression Profiling

The idea of value profiling can be generalized to that ofexpression profiling, where
we profile the distribution of values for an arbitrary expression, not just a variable or
register, at a given program point. Examples include arithmetic expressions, such as
“the difference between the contents of registersra and rb” and boolean expressions
such as “is the value of registerra different from that of registerrb?” In general, as
shown below, the expressions profiled may not even occur in the program, either at the
source or executable level.

Expression profiles are not simply summaries of value profiles: e.g., given value
profiles for registersra andrb, we cannot in general reconstruct how often the boolean
expressionra == rb holds. Expression profiles are important for two reasons. First,
they conceptually generalize the notion of value profiles byallowing us to capture the
distribution of relationships between different program entities. Second, an expression
profile may have a skewed distribution, and therefore enableoptimizations, even if the
value profiles for the constituents of the expression profileare not very skewed: for
example, a boolean expressionra 6= rb may be true almost all of the time even if the
values inra andrb do not have a very skewed distribution.

The expressions that we choose to profile are determined by considerations of the
optimizations that they might enable. Our implementation currently targets two opti-
mizations:loop unrollingandload avoidance.

3.1 Loop Unrolling

Here we try to determine the distribution of the number of iterations of the loop. In
simple cases, this may be just the value of a variable: e.g., in a loop of the form

for (i = n; i > 0; i--) { ... }

In general, however, the iteration count may depend on more complex expressions
whose value may not be known at compile time: e.g., in a loop ofthe form

for (i = m; i < n; i++) { ... }

iteration count is given by the expressionn-m. This expression does not appear in
the source code. If the iteration count of a loop can be predicted given the value of an
expression prior to the execution of the loop, and this distribution is sufficiently skewed,
we may choose to generate, subject to i-cache considerations, an unrolled version of the
loop based on that information. Notice that the test to decide whether or not to execute
the unrolled version of a loop is made by a single test that is outside the loop, so the
associated overhead is not very high.



....
ldq $r0, A($ra)

stq $r1, B($rb)

ldq $r0, A($ra)

.... ....

....

....

....

TF

ldq $r0, A($ra)

stq $r1, B($rb)

ldq $r0, A($ra)

ldq $r0, A($ra)

stq $r1, B($rb)

subq $ra, $rb, $rc
addq $rc, A-B, $rc
bne $rc, ...

(a) original code (b) optimized code

Fig. 2. Load Avoidance Example

3.2 Load Avoidance

The goal here is to use expression profiling to determine relationships between memory
access operations, and thereby avoid unnecessary memory operations where possible.
Suppose we have a sequence of operations (typically within aloop) as shown in Figure
2(a). Letk(r) represent the address obtained by addingk to the contents of register
r. If we can guarantee that the addressesA(ra) andB(rb) will never overlap, we can
eliminate the second load operation in the sequence shown. However, in practice, it is
very difficult to prove that the two instructions will never overlap. We use expression
profiling to determine how often the two instructions overlap at runtime, and use this
information to optimize the code.

We first identify the instructions that define the index registersra andrb and attempt
to determine the rate at which these registers change withinthe loop; if either register
is defined by a load operation from a fixed location, we attemptto determine the rate at
which the value at that location changes. If we can obtain constant rates of changeδa
andδb for these registers, respectively, we consider the following cases:

(δa = δb): Here, it suffices to test whetherA(ra) 6= B(rb) at entry to the loop; the
expression profiled in this case is essentially this expression, simplified as far as
possible to reduce runtime overheads.

(δa 6= δb): Assume thatδa > δb and both rates are non-negative (the other cases are
analogous). There is no conflict between the two addresses if, at entry to the loop,
eitherma(ra)>mb(rb) or (ma(ra)+n�δa)<mb(rb), wheren is the iteration count
of the loop. In this case we profile these two expressions separately.

In our example,ra andrb are unchanged within the loop. Therefore, we profile the
expressionA(ra) 6= B(rb). If expression profiling determines that at runtime the above
expression is true sufficiently frequently, we optimize thecode. The specialized code
from our example is shown in Figure 2(b). Again, in the specialized code the expression
is tested once outside the loop and so is not very expensive. Note that the aliasing test
is not present in either the source code or the original executable.



3.3 Transformation

Expression-profile-based code transformations are nearlyidentical to those performed
for value-profile-based code specialization. A clone of theaffected blocks is created,
and a test is inserted to choose between the specialized codeand the original code.
Additionally, information about (non-)aliasing between pointers, obtained from expres-
sion profiling, is attached to the relevant basic blocks. We then rely on other parts of
our system to eliminate the unnecessary load and store instructions.

As an example of the application of expression profiling, in the SPEC-95 benchmark
m88ksim, expression profiling allows us to determine that three pointers in a heavily
executed loop within the functionalignd are usually not aliased; this information is
used to eliminate several redundant memory accesses and thereby effect a significant
speed improvement.

4 Experimental Results

Execution Time(secs)
Program unspecialized specialized Tspec=Tnospec

(Tnospec) (Tspec)

compress 260.75�0:02% 254.25�0:30% 0.975
gcc 220.45�0:16% 221.58�0:08% 1.005
go 309.43�0:81% 301.57�0:26% 0.975
ijpeg 327.24�0:02% 320.95�0:41% 0.981
li 249.59�0:03% 237.97�0:04% 0.953
m88ksim 220.21�0:08% 189.19�0:06% 0.859
perl 178.96�1:91% 169.54�0:51% 0.947
vortex 301.22�1:09% 297.35�0:05% 0.987

Table 1. Impact of Value-Profile-based Specialization on ExecutionTime

We have implemented the ideas described here within thealto link-time optimizer
[18]. The programs used were the 8 integer programs from the SPEC-95 benchmark
suite. The programs were compiled with the vendor-suppliedC compiler V5.2-036, in-
voked ascc -O4, with additional linker options to retain relocation information and
produce statically linked executables.7 Both the initial execution frequency profiles as
well as the value profiles for each program were obtained using the SPEC training in-
puts; the execution times reported were then obtained usingthe SPEC reference inputs.

The results of our experiments are shown in Table 1. The second column of this
table, with heading “unspecialized”, gives the execution time for the executables us-
ing all optimizations withinalto except for value-profile-based specialization, while

7 We use statically linked executables becausealto relies on the presence of relocation infor-
mation for its control flow analysis. The Digital Unix linkerld refuses to retain relocation
information for non-statically-linked executables.



the third column, with heading “specialized”, gives the execution times when value-
profile-based specialization is carried out as well. The last column gives the ratio of
the execution times with and without specialization. The timings were obtained on a
lightly loaded DEC Alpha workstation (i.e., with no other active processes) with a 300
MHz Alpha 21164 processor with a split primary cache (8 Kbytes each of instruction
and data cache), 96 Kbytes of on-chip secondary cache, 2 Mbytes of off-chip backup
cache, and 512 Mbytes of main memory, running Digital Unix 4.0. In each case, we ran
the program 10 times and discarded the biggest and smallest execution times; for the
remaining runs, we computed the mean as well as the maximum deviation of any run
from the mean. Our results are given in Table 1, with the maximum deviation expressed
as a percentage of the mean.

It can be seen from these numbers that automatic value-profile-based specializa-
tion can yield noticeable performance improvements for nontrivial programs. Most of
our benchmarks experience speedups, withm88ksimandperl experiencing the largest
speedups of 14.1% and 5.6% respectively. Due to space constraints, a description of
the reasons for the performance improvements in the variousbenchmarks is relegated
to Appendix A. We have not yet determined the reasons for the slowdown in thegcc
benchmark: sometimes, as shown here, the specialized code is slower than the unspe-
cialized code, while at other times the specialized code is faster; we are currently in-
vestigating this problem. A detailed examination of the low-level performance of the
specialized programs, using hardware performance counters, indicates that the perfor-
mance of the specialized programs suffers from deficienciesin other parts of our system
that we believe will not be difficult to rectify. For example,several of the specialized
benchmarks suffer from an increase in mispredicted branches (compressby about 7%,
perl by about 4%), which we suspect may be due to the layout of the code. The number
of i-cache misses also goes up in some programs (m88ksimby 6%;compressby 16%,
though in this case the miss rate is so low that it is not clear that this has a significant ef-
fect), again pointing to code layout as a possible culprit. We expect to be able to address
these problems soon.

Program No. of Program Points
Total Profiled Optimized

compress 16749 74 0+1
gcc 271899 7231 196+0
go 65328 1352 4+0
ijpeg 49650 243 5+1
li 32221 171 7+0
m88ksim 40867 253 16+0
perl 82462 501 14+0
vortex 113236 322 15+0

Table 2.Extent of Profiling and Specialization

Table 2 compares, for each benchmark, the total number of program points that
could have been profiled/specialized (column 2) with the number that were actually
profiled (column 3) and the number that were then optimized (column 4); the last of



Code Size(Instructions)
Program unspecialized specialized Ispec=Inospec

(Inospec) (Ispec)

compress 17381 17529 1.009
gcc 279429 281584 1.007
go 71046 71169 1.002
ijpeg 51045 52385 1.026
li 29106 29131 1.001
m88ksim 40865 41237 1.009
perl 82167 82304 1.002
vortex 103660 103743 1.001

Table 3. Impact of Value-Profile-based Specialization on Code Size

these entries are given in the formm+ n, wherem is the number of program points
that were specialized andn the number of loops that were unrolled. This indicates that
the our computation of the cost/benefit tradeoffs is highly selective: for most of the
benchmarks fewer than 1% of the potential candidates for profiling are actually chosen
for profiling (gcccomes in highest with a little under 2.5% of the candidates actually
profiled). Table 3 shows, for each benchmark, the code growththat results from spe-
cialization. The small number of points chosen for profilingkeeps the value profiling
overhead under control, while of the small number of points chosen for specialization
keeps the code growth modest. As mentioned previously in Section 2.2, our profiling
overhead is considerably reduced by applying our benefit analysis before performing
the value profiling. Calderet al.[7] report a 33x average slowdown for full value profil-
ing on the SPEC-95 benchmarks.Alto, in contrast, produced 3x-9.5x slowdowns (6.3x
on average) for value and expression profiling.

Figure 3 illustrates the overheads associated with value-profile-based specialization.
It shows, relative to the time taken byalto to optimize an executable program without
either value profiling or specialization, the following quantities: (i) the time taken to
instrument the code for value profiling, i.e., to read in an executable file, identify candi-
dates for value profiling, insert instrumentation code, andwrite out the instrumented bi-
nary (Section 2.2); and(ii) the time taken to specialize the program using value profiles,
i.e., read in the program as well as the profile data, carry outall optimizations including
value-profile-based specialization, and write out the optimized executable (Section 2.4).
The initial cost-benefit computation to identify profiling candidates, together with the
instrumentation overhead, results in overheads in the range of 20%–80% (about 44% on
the average) compared to the time for ordinary processing byalto. Specialization based
on value profiles incurs overheads of factors ranging from 1:6x to 2:1x (about 1:87x on
the average).

5 Related work

There is a considerable body of work on program specialization within the partial eval-
uation community: Joneset al.give an extensive discussion and bibliography [15]. This
work focuses largely on code specialization starting with known values for some or all
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Fig. 3. Overhead of Value-Profile-Based Code Specialization

of a program’s inputs. Specialization based on value profiles, where we reason about
the runtime distribution of values taken on by a variable, isnot considered.

In some ways, our approach to specialization is reminiscentof a transformation re-
ferred to as “the trick” in the partial evaluation literature (e.g., see [15]). There are two
main differences between these transformations. The first is that “the trick” is applied to
variables ofbounded static variation, i.e., which take on values from a finite, statically
known, set, while our approach does not have such a restriction (e.g., in the example
discussed in Section 2.5, the variable that is specialized ranges over the set of integers).
Furthermore, “the trick” offers no guidance regarding which values are worth specializ-
ing and which are not: because of this, automatic application of this transformation can
be problematic if the candidate variable is of bounded static variation but ranges over
a very large, albeit finite, set. The analysis we describe is intended to address precisely
this problem. As such, it can be a useful complement to standard partial evaluation
techniques.

Also related to our cost-benefit analysis is the work on speedup analysis in partial
evaluation [2, 15]. This analysis starts with a binding-time annotated program, where
variables whose values are statically known are marked as such. Speedup analysis
estimates the asymptotic speedup that partial evaluation of the program would yield.
By contrast to this work, we cannot assume that we have a binding-time annotated
program—indeed, the whole point of our analysis is to take variables whose values
cannot be statically predicted, and determine which if any,of the (possibly unbound-
edly many) values taken on by such variables might yield performance improvements.
Another important difference is that we are concerned not with asymptotic speedups
but rather with concrete improvements in speed, and therefore pay careful attention to
low level issues such as the effects of specialization on instruction cache utilization (as
discussed, for example, in Section 2.4 in the context of loopunrolling).

Some implementations of object-oriented languages attempt to mitigate the high
cost of dynamically dispatched calls using a limited form ofvalue-profile-based spe-
cialization. The idea, referred to astype feedbackor receiver class prediction[1, 14], is
to monitor the targets of dynamically dispatched function calls, and to use this informa-
tion to inline the code for frequently called targets. The main limitation of this approach
is that the specialization is restricted to dynamically dispatched function calls, and so



will not be applied to “ordinary” code even if such code couldbenefit substantially from
knowledge of the values most commonly encountered at runtime.

Calderet al. have investigated issues and techniques for value profiling[6]. Our
implementation of value profiling was inspired by theirs andis very similar to it. While
Calderet al. consider profiling both registers and memory locations, we only profile
registers. We use a two-stage profiling process in order to reduce the time and space
overheads. The idea is to first profile the application using asimple basic-block profiler
such as pixie, and then use the execution frequency information so obtained to identify
candidates for value profiling and specialization. In a different paper, Calderet al.dis-
cuss value-profile-based optimization [7]: they use hand-transformed examples to show
that value-profile-based specialization can yield significant speed improvements. By
contrast, our work describes value-profile-based specialization that is fully automatic
and that has been integrated into a link-time optimizer.

Systems for dynamic code generation and optimization [4, 8,12] are also confronted
with tradeoffs between the cost of generating specialized code and the savings obtained
from the execution of this code. The problem, while qualitatively similar to ours, is
considerably more complicated in practice because the runtime costs include the cost
of generating the specialized code, which can be difficult toestimate precisely. Systems
that extend existing source languages with facilities for dynamic code generation, such
as Tempo [8] and DyC [12], generally require users to annotate the program fragments
that should be subjected to runtime code generation and specialization, effectively mov-
ing the burden of analyzing the cost-benefit tradeoff to them. Systems for dynamic op-
timization of conventionally optimized programs, such as Dynamo [4], rely on simple
heuristics to determine whether a code fragment is worth optimizing: programs where
these heuristics are inadequate can suffer noticeable performance degradation.

The work that is conceptually closest to that described hereis some recent work
towards automating the cost-benefit analysis for DyC [16]. The goals of this work are
considerably more ambitious—and also more difficult—than ours. A direct comparison
of the efficacy of the two systems is difficult, partly becausethey take very different
approaches towards specialization (one is static, the other dynamic), and partly because
the benchmarks used by the authors are mostly different fromours; of the benchmarks
considered for DyC [13], the only one that is also consideredby us ism88ksim. For this
program, Grantet al. report an overall speedup of 5%, whereas we obtain a speedup of
a little over 13%. Other studies by the authors of DyC suggestthat, assuming that the
cost-benefit tradeoff assessment can be made properly, runtime specialization can yield
significant asymptotic speedups, albeit sometimes with fairly high break-even points
[3].

6 Conclusions

This paper describes an implementation of low level code specialization based on value
profiles. Fundamental to our approach is a low-level cost-benefit analysis that is used
both to reduce the overheads due to value profiling and also toidentify the code to be
specialized. Experimental results indicate that the cost-benefit analysis is effective in
filtering out unpromising candidates, and that several non-trivial programs experience
noticeable performance improvements due to value-profile-based specialization.
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Appendix A Sources of Improvements

The sources of performance improvements for these benchmarks are discussed below.
There is, however, one caveat. In our system, value-profile-based specialization is car-
ried out after function inlining. Because of this, the code structure encountered during
specialization, and the functions associated with the specialized code fragments, may
not always correspond to those of the source program. Due to space constraints we only
report most important sources for improvements.

compress: Expression profiling is used to unroll a loop and identify non-conflicting
memory operations. This information allows memory access coalescing [10].

gcc : Most of the improvement comes from knowing that one of the values in the func-
tion notestoreshas the value 34 over 80% of the time, and from knowing that 70%
of the time the third argument to the functionsimplify binary operationis 34.

go : Roughly half of the improvement comes from specializing a value in the function
j2moreto 0, which causes several conditionals to be eliminated. Most of the rest of
the speedup comes from specializing a value in the functionplaynexttoto 0.

ijpeg : Expression profiling is used to unrol a loop and simplify thecode in the unrolled
loop.

li : Sequences of independent conditionals in functionsxleval and sweepare trans-
formed so that the common case is tested first. Aswitch statement in the function
livecar is transformed so that the common case did not have to go through a jump
table.

m88ksim: Expression profiling is used to determine that three pointers in the function
alignd are unaliased in the common case, allowing the elimination of several load
and store instructions in that function. The functionkilltime is specialized for an
argument of 1.

perl : The functionmemmoveis specialized for the single byte move. The (internal)
function OtsDivide64Unsigned, which emulates integer divison (since the Alpha
does not have an integer division instruction), is specialized for the divisor 16.

vortex : Most of the improvement comes from knowing that a value in the function
Mem GetWordtakes on the value -1 nearly 100% of the time.


