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Abstract

Traditional optimizing compilers are limited in the scofdélweir optimizations by the fact that only a single
function, or possibly a single module, is available for g and optimization. In particular, this means that
library routines cannot be optimized to specific callingtests. Other optimization opportunities, exploiting
information not available before linktime such as addressfevariables and the final code layout, are often
ignored because linkers are traditionally unsophistitatd possible solution is to carry out whole-program
optimization at link time. This paper describ&kto, a link-time optimizer for the Compaq Alpha architecture.
It is able to realize significant performance improvementneor programs compiled with a good optimizing
compiler with a high level of optimization. The resultingdeois considerably faster that that obtained using the
OM link-time optimizer, even when the latter is used in caomwjion with profile-guided and inter-file compile-
time optimizations.

*The work of Robert Muth, Saumya Debray and Scott Wattersansuaported in part by the National Science Foundation ugigert
numbers CCR-9502826, CCR-9711166, and CDA-9500991. KeeBd3schere is a research associate with the Fund for Sicidreisearch
— Flanders.



1 Introduction

Optimizing compilers for traditional imperative languagsten limit their program analyses and optimizations to
individual procedures [1]. This has the disadvantage thaespossible optimizations may be missed because they
depend on propagating information across procedure beigsdalowever, even if a compiler implements inter-
procedural analyses (see, for example, [16, 17, 26, 32, B@)analyses and optimizations possible are limited to
code that is available for examination at compile time. Theans that code involving calls to library routines, to
procedures defined in separately compiled modules, andrtandigally dispatched “virtual functions” in object-
oriented languages (in the case where the virtual funciarever overridden), cannot be effectively optimized.
Other optimizations, e.g., to reduce the cost of addresgatations [37] require information not available at
compile time.

A possible solution is to carry out program optimization whke entire program—Ilibrary calls and all—is
available for inspection: that is, at link time. While thisakes it possible to address the shortcomings of the
traditional compilation model, it gives rise to its own pleins, for example:

— Machine code usually has much less semantic informatian source code, which makes it much more
difficult to discover control flow or data flow information. Assimple example, even for simple first-order
programs (i.e., where functions are not treated as data asskd around, e.g., in the form of closures in
languages such as Scheme or ML, procedure parameters inalgeg such as Pascal, or using function
pointers as in C), control flow analysis of executable files lba difficult because determining the extent
of jump tables, and hence the possible targets of the codeeddrom case or switch statements, can be
difficult; at the source level, by contrast, the correspoggiroblem is straightforward.

— Compiler analyses are typically carried out on represiams of source programs in terms of high-
level source language constructs. Here, “nasty” featuresiher infrequent, or result in non-standard-
conforming programs whose observable behavior are notagteed to be preserved under optimizations.
For example, explicit nontrivial pointer arithmetic—i.beyond simple increment or decrement operations
on pointers—are usually not frequently encountered, whileof-bounds array accesses typically result
in non-standard-conforming programs. Because of this,pilemanalyses can either handle them very
conservatively—essentially, giving up when such feat@amesencountered—or adhere strictly to the lan-
guage semantics, e.g., by assuming that an array aeesaddresses only elements of the arsathereby
simply ignoring potentially non-standard-conformantstacts such as out-of-bounds accesses. Neither al-
ternative is difficult to implement or has a significant acdbesimpact on the extent of optimization achieved
for most programs.

At the level of executable code, by contrast, all we havelaatisty features. Nontrivial pointer arithmetic
is ubiquitous, both for ordinary address computations amndrfanipulating tagged pointers. If the number
of arguments to a function is large enough, some of the argtsmeay have to be passed on the stack. In
such a case, the arguments passed on the stack will typresiige at the top of the caller’s stack frame,
and the callee will “reach into” the caller’'s frame to acctssm: since the stack frame is typically accessed
as an array of words indexed by the stack (or frame) poinités, i nothing but an out-of-bounds array
reference. Unfortunately, source-level approaches talliansuch features are no longer adequate at the
level of executable code: treating nontrivial pointertarietic conservatively by giving up on them has a
significant adverse impact on optimization, while ignorthg effects of out-of-bounds array accesses can
cause incorrect optimization to be carried out.

— Executable programs tend to be significantly larger tharsthurce programs they were derived from. Cou-
pled with the lack of semantic information present in thesgpams, this means that sophisticated analyses
that are practical at the source level may be overly experadithe level of executable code because of their
time or space requirements.

This paper describes a link-time optimizer that we havetldail the Alpha architecture. Our system, which
we callalto (“a link-time optimizer”), reads in an executable file praed by the linker (we currently support



Digital UNIX ECOFF binaries; a version for Elf binaries umdenux has been developed and is currently being
tested), as well as execution profile information (optipfatarries out various analyses and optimizations, and
produces another executable file. Experiments indicateetren though it currently implements only relatively
simple analyses—for example, checks for pointer aliasiegoaly implemented in the most rudimentary and
conservative way—the performance of the code generatdudsysstem is considerably better than that generated
by theom link-time optimizer [36] supplied by the vendor.

The remainder of the paper is organized as follows: Sectigivés a brief overview of the Alpha processor.
Section 3 describes the overall organizatioadfo. Section 4 discusses how control flow analysis is carried out
Section 5 describes the analyses carried outlly, Section 6 describes the optimizations that are perforanedl,
Section 7 gives performance results. Section 9 summariagsnglated to ours. Finally, Section 10 concludes.

Alto can be downloaded free of charge framtp://www.cs.arizona.edu/alto.

2 The Alpha Architecture: an Overview

The Alpha is a conventional superscalar RISC processor@4ithit words and 32-bit instructions. It has thirty-
two 64-bit integer registers (registe$s ... $31) and thirty-two floating-point registers (registe32 ... $63).
Of these, registe$31 is hard-wired to the integer value 0, wh$é3 is hard-wired to the floating-point value 0.0.
Additionally, “standard usage” of these registers is alofed:

Integer Registers Floating-Point Registers Usage

$0 $32, $33 return values of functions

$1-8$8, $22-$25, $27-$28  $42-$47, $54-$62 scratch registers

$9-$15 $3441 callee-saved registers

$16—21 $48-$53 argument registers for function calls
$26 (ra) return address register for function calls
$29 (gp) “global pointer” register

$30 (sp) stack pointer

Of these, the use of the global pointer regigie($29) deserves some explanation. On a typical 32-bit architectu
with 32-bit instruction words and 32-bit registers, a (39-bonstant is loaded into a register via two instructions,
one to load the high 16 bits of the register and one for the I6wbits; in each of these instructions, the 16 bits
to be loaded are encoded as part of the instruction word. Memvsince the Alpha has 32-bit instructions but
64-bit registers, this mechanism is not adequate for lapdii4-bit constant (e.g., the address of a procedure or a
global variable) into a register. Instead, such constartgallected into one or mormglobal address tablene

for each separately compiled module. The generated codsses this table via thgp register, together with a
16-bit displacement. Accessing a global object involves $teps: first, the address of the object is loaded from
the global address table; this is then used to access thetabferred to, e.g., to load from or store to a global
variable, or jump to a procedure.

3 System Organization

The execution o&1to can be divided into five phases. In the first phase, an exdeuthb(containing relocation
information for its objects) is read in, and an initial, somh@t conservative, inter-procedural control flow graph is
constructed. In the second phase, a suite of analyses aingzgitons is then applied iteratively to the program.
The activities during this phase can be broadly divided ihtee categories:

Simplification : Program code is simplified in three ways: dead and unredebabe is eliminated; operations are
normalized, so that different ways of expressing the saneeation (e.g., clearing a register) are rewritten,
where possible, to use the same operation; and no-opsatlypinserted for scheduling and alignment
purposes, are eliminated to reduce clutter.

1alto can use either basic block profiles, generated using theoveuppliedpixie tool, or basic block and edge profiles that it can itself
generate; we are currently extending the system to alsaaenealue profiles [9] at specific points of interest.



Analysis : A number of analyses are carried out during this phaseydhaty register liveness analysis, constant
propagation, stack usage patterns, and jump table analysis

Optimization : Optimizations carried out during this phase include staddompiler optimizations such as peep-
hole optimization, branch forwarding, copy propagatiarg amvariant code motion out of loops; machine-
level optimizations such as elimination of unnecessarigtegsaves and restores at function call boundaries;
architecture-specific optimizations such as the use ofitiondl move instructions to simplify control flow;
as well as improvements to the control flow graph based orethdts of jump table analysis.

This is followed by a function inlining phase. The fourth ghaepeats the optimizations carried out in the second
phase to the code resulting from inlining. The final phaseesput profile-directed code layout [30], instruction
scheduling, and insertion of no-ops for alignment purppatsr which the code is written out.

Alto carries out inlining because there may be opportunitiegifaring at link time, e.g., across module and
library boundaries, that may not have been present at ceripie. The reason the simplification and optimization
phases are performed twice, before and after inlining, a they influence inlining and are influenced by it.
For example, whether or not a function call will be inlinedpdads, in part, on the size of the callee, which is
affected by dead and unreachable code elimination priarlioing. These, in turn, are affected by optimizations
such as copy propagation and constant folding. For exanmtég;procedural constant propagation and constant
folding prior to inlining can propagate the value of a const@gument into a library routine; this can then allow
the outcome of a conditional branch in that routine to beicsthy determined, and the subsequent removal of
unreachable code can reduce the size of that routine to ihewbere it gets inlined into one or more call sites.
The inlining phase, in turn, can give rise to further oppoities for optimizations. For example, most of the
optimizations withinalto are conservative in their treatment of function calls irt th@y assume that the callee
may read or write to any memory location; inlining exposesrttemory access behavior of the inlined routine and
can thereby enhance the effects of many of these optimizatio

4 Control Flow Analysis

Traditional compilers generally construct control flowgjna for individual functions, based on some intermediate
representation of the program. The determination of ipt@eedural control flow is not too difficult; and since an
intermediate representation is used, there is no need tovitbamachine-level idioms for control transfer. As a
result, the construction of a control flow graph is a fairlagghtforward process [1].

Things are somewhat more complex at link time because macioide is harder to decompile. The algorithm
used byalto to construct a control flow graph for an input program is akofes:

1. The start address of the program appears at a fixed loaatibim the header of the file (this location may
be different for different file formats). Using this as a #tag point, the “standard” algorithm [1] is used
to identify leaders and basic blocks, as well as functiomyebitocks. The relocation information of the
executable is used to identify additional leaders which ldkaiherwise not be detected (eg. jump table
targets) and those basic blocks are marked relocatablehig\stagealto makes two assumptiongi)
that each function has a single entry block; gl that all of the basic blocks of a function are laid out
contiguously. If the first assumption turns out to be incatréhe flow graph is “repaired” at a later stage;
if the second assumption does not hold, the control flow g@ptstructed byalto may contain (safe)
imprecisions, and as a result its optimizations may not leffastive as they could have been.

2. Edges are added to the flow graph. Whenever an exact datdion of the target of a control transfer is
not possiblealto estimates the set of possible targets conservativelygusispecial nod® nknownand
a special functiorFynknownthat are associated with the worst case data flow assumg(iiensthat they
use all registers, define all registers, etc.). Any basiclblohose start address is marked as relocatable is
considered to be a potential target for a jump instructioth wnresolved target, and has an edge to it from
Bunknowns @ny function whose entry point is marked as relocatablersitiered to be potentially a target of



an indirect function call, and has a call edge to it frégaknown Any indirect function call (i.e., using the
jsr instruction) is considered to cdl|,knownWhile other indirect jumps are considered to jumBt@xnown

3. Inter-procedural constant propagation is carried ouherresulting control flow graph, and the results used
to determine addresses being loaded into registers. Tsnation, in turn, is used to resolve the targets of
indirect jumps and function calls: where such targets carebelved unambiguously, the edgeR@known
or BunknowniS replaced by an edge to the appropriate target.

4. The assumption thus far has been that a function callretoarits caller, at the instruction immediately after
the call instruction. At the level of executable code, thisuanption can be violated in two wa§ g he first
involvesescaping branchese., ordinary (i.e., non-function-call) jumps from onsttion into another: this
can happen either because of tail call optimization, or bgeaf code sharing in hand-written assembly code
that is found in, for example, some numerical libraries. $beond involves nonlocal control transfers via
functions such aset jmp andlongjmp. Each of these cases is handled by the insertion of additonrol
flow edges, which we callompensation edgemto the control flow graph: in the former case, escaping
edges from a functioffi to a functiong result in a single compensation edge from the exit nodgtofthe
exit node off; in the latter case, a function containinget jmp has an edge frorfynknownto its exit node,
while a function containing @ongjmp has a compensation edge from its exit nodé€ fg&nown The effect
of these compensation edges is to force the various dataflalyses to safely approximate the control flow
effects of these constructs.

5. Finally, alto attempts to resolve indirect jumps through jump tablesctvlairise fromcase or switch
statements. This is done as part of the optimizations mesadiat the beginning of this section. These
optimizations can simplify the control and/or data flow eglotio allow the extent of the jump table to be
determined. The essential idea is to use constant propag&ection 5.1) to identify the start address of
the jump table, and the bounds check instruction(s) to deterthe extent of the jump table. The edge from
the indirect jump tBunknowniS then replaced by a set of edges, one for each entry in the jaiobe. If all of
the indirect jumps within a function can be resolved in thag/pany remaining edges froBynknownto basic
blocks within that function are deleted.

5 Program Analysis

Once the flow graph has been constructed for a program, ithigctied to various dataflow analyses, the most
important of which are described here.

5.1 Interprocedural Constant Propagation

There are generally more opportunities for interproceldiomastant propagation at link time than at compile time.
There are two reasons for this: first, the entire prograntdiag all the library routines, is available for inspectjo
and second, at link time it is possible to detect and deal arithitecture-specific computations that are not visible
at the intermediate code representation level typicalgdusy compilers for most optimizations. An example of
the latter case is the computation of geregister on the Alpha processor: the value of this registgenerally
recomputed at the entry to each function as well as on ret@m £very function call, but in many cases the
recomputation is unnecessary and can be eliminated by gatipg the value of the register through a program. It
should be noted that this optimization cannot be carrie@betmpile time since the value gp is only determined
at link time.

The analysis used il to is essentially a standard iterative constant propagdtinited to registers but carried
out across the control flow graph of the entire program. Thisthe effect of communicating information about

2In some architectures, the callee may explicitly manigutae return address under some circumstances, e.g., phet SPARC calling
convention is that in some cases there is an extra word inatetgifollowing the call instruction, and in these cases,dhllee increments the
return address to skip over this word (we are grateful to ampamous referee for pointing this out to us). Such situatida not arise in the
Alpha architecture, and are not handledaiyto.



Program No. of instructions Evaluated/Total
Total | Evaluated
compress 20707 3140 0.152
gcce 353002 67352 0.191
go 83929 14661 0.175
ijpeg 62639 7470 0.119
li 40832 7464 0.183
m88ksim 53498 10576 0.198
perl 107229 20920 0.195
vortex 155030 39204 0.253
| Geometric Mean: | 0.180 |

Table 1: Efficacy of Interprocedural Constant Propagation

constant arguments from a calling procedure to the calleémprove precisionalto attempts to determine the
registers saved on entry to a function and restored at thdreni it if a registerr that is saved and restored by
a function in this manner contains a constafist before the function is called, thens inferred to contain the
valuec on return from the caff.

The results of constant propagation, after all optimizagtibave been carried out, are shown in Table 1. The
column labelled “Total” gives the (static counts for) thealmumber of instructions in each program (after unreach-
able code elimination—see Section 6.1), while the colurbellad “Evaluated” gives the number of instructions
whose operands and result could be determined at link titngan be seen that, on the average, it is possible to
evaluate about 18% of the instructions of a program at limeti However, this does not mean that these 18% of
the instructions in a program can be removedlyo, since very often the instructions whose outcome can be
evaluated ahead of time represent address computatioasdessing arrays or records, or for function calls. This
information can, nevertheless, be used to advantage in o&s®s, e.g., by replacing indirect function calls with
direct calls, or register operands by immediate operands.

As shown in Figure 1, this analysis has a profound impact erpirformance of the generated code. Turning
off this analysis results in an overall slowdown of over 10f6tlhe SPEC-95 benchmarks, with some programs,
such aan88ksim perl, andvortexsuffering slowdowns of 15-20%. The reason for this impacgreat part, is
that many control and data flow analyses rely on the knowledgenstant addresses computed in the program.
For example, the code generated by the compiler for a fumcidl typically first loads the address of the called
function into a register, then useg ar instruction to jump indirectly through that register. Ifrsiant propagation
can be used to determine that the address being loaded isdavlikée, and the callee is not too far away, the
indirect function call can be replaced by a direct call usihgr instruction: this is not only cheaper, but also vital
for the construction of the inter-procedural control flovajgin of the program and for other optimizations such as
inlining. Another example of the use of constant addressrimétion involves the identification of possible targets
of indirect jumps through jump tables: unless this can beegan indirect jump must be assumed as being capable
of jumping to any basic block of a functidhwhich can significantly hamper optimizations. Finally, kriiedge of
constant addresses is useful for optimizations such agtheval of unnecessary memory references (Section 6.3)
and strength reduction in constant computations (Sectidn 6

SUnfortunately, we cannot rely on the calling conventionsg@bserved: hand-written assembly code in libraries dm¢slways obey
such conventions, and compilers may ignore them when dategarocedural register allocation.
“More precisely, any basic block that is marked as “relodatab
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Figure 1: Performance impact of interprocedural constespg@gation

5.2 Interprocedural Liveness Analysis

Interprocedural dataflow analyses can be eitmertext-insensitiver context-sensitiveContext-insensitive anal-
yses simply combine the control flow graphs for individualqedures into a single large graph and analyze this
using standard intra-procedural techniques, without ikegpack of which return edges correspond to which call
edges. This has the advantages of simplicity and efficienoghing special needs to be done to handle inter-
procedural control flow, and a procedure does not have to-a@ab/zed for its various call-sites [6, 7, 16, 32].
The problem is that such analyses can suffer from a loss aigioa because they can explore execution paths
containing call/return pairs that do not correspond to eztbler and therefore cannot occur in any execution of
the program. Context-sensitive analyses, by contrasig dkis problem by maintaining information about which
return edges correspond to which call sites, and propagatformation only along realizable call/return paths
[17, 26, 39]. The price paid for this improvement in preaisi® an increase in the cost of analysis.

Alto implements a relatively straightforward interprocedlixeness analyses [1], restricted to registers, and
extended to deal with idiosyncracies of the Alpha instartset. For example, theall pal instruction, which
acts as the interface with the host operating system, hae tebdled specially since the registers that may be
used as through this instruction are not visible as expjpiirands of the instruction: our implementation currently
implements this using the nodgknownMmentioned in Section 4. The conditional move instructi@oakquires
special attention as the destination register has to bedmres as a source register as well. The remainder of this
section gives a high-level overview of our liveness analysi

In order to propagate dataflow information along realizatali/return paths onlyalto computes summary
information for each function, and models the effect of fiime calls using these summaries. Given a call site,
consisting of a call node. and a return node, for a call to a functiorf, the effects of the function call on liveness
information are summarized via two pieces of information:

1. mayUséf], which gives the registers that may be usedfbyA registerr may be used by if there is a
realizable path from the entry node bfo a use of without an intervening definition of mayUséf] hence
describes the set of registers that are always live at thg antf independent of the calling context, and
which are therefore necessarily live at the call nogle

2. byPas§f]. The set of registers which, if live at, will also be live anc.

There is some flexibility in the choice faayPas§f]. Srivastava and Wall choodgPass$f] to be the complement

of the set of registers that are guaranteed to be dead atterftfid6]. The problem with this is that it introduces a
mutual dependency between thgPassandmayUsesets, which complicates the flow equations. Goodwin chooses
byPas§f] to bemustDeff], the complement of the set of registers that will necessheildefined byf: this avoids

the mutual dependency problem mentioned [21]. In geneoalghier, it is not hard to see that any set which lies
betweermustDeff] andmustDeff] U mayUséf] is a valid candidate fopyPas$f]. Our choice fobyPas$f] is



Load Instructions Executeck 10°)
Program Trivial Context-insensitivel Context-sensitivel Triv/C-Ins | Triv/C-Sens
(Triv) (C-Ins) (C-Sens)

compress 12.069 12.069 11.706 1.000 0.970
gce 11.750 11.464 11.160 0.976 0.950
go 19.706 18.850 17.897 0.957 0.908
ijpeg 20.116 20.000 19.955 0.994 0.991
li 18.102 17.948 17.628 0.991 0.974
m88ksim 15.506 15.028 14.469 0.967 0.933
perl 12.616 12.267 11.930 0.972 0.946
vortex 24.504 24.048 23.326 0.981 0.952

| Geometric Mean | 0980 | 0953 |

Table 2: Effect of Liveness Analysis on Load Instructiong€ixted

a superset of Goodwin’s, and results in more uniform dataflquations that are somewhat simpler to implement
[29].

Our analysis proceeds in three phases. The first two phasgsute summary information for functions, i.e.,
their mayUseand byPasssets; the third phase then uses this information to do theabliteness computation.
While the first two phases can be carried out in parallel, gittiem sequentially reduces the amount of space used,
though possibly at the cost of increased execution time.i@plementation carries out the phases sequentially in
order to conserve space.

It turns out that even context-sensitive liveness analysag nevertheless be overly conservative if they are
not careful in handling register saves and restores atifamctll boundaries. Consider a function that saves the
contents of a register, then restores the register befammiag. A register that is saved in this manner will appear
as an operand of atore instruction, and therefore appear to be used by the funditiotine subsequent restore
operation, register will appear as the destination ofl@ad instruction, and therefore appear to be defined by the
function. A straightforward analysis will therefore infdwatr is used by the function before it is defined, and this
will causer to be inferred as live at every call site for To handle this problenalto attempts to determine, for
each function, the set of registers it saves and restoifae set of callee save registers of functibrsavéf], can
be determined we can use it to make the analysis somewhablessrvative by removing this set framayUséf]
and adding it tdoyPas§f] whenever those values are updated during the fixpoint caatipot

Ultimately, the utility of various analyses should be meadby the extent to which they enable optimizations
to be carried out. In particular, analyses that attain imedgrecision at the cost of increased complexity should
be justified by the additional code optimizations that beeqrossible as a result of the improvement in preci-
sion. Table 2 compares context-insensitive and contendibee versions of our interprocedural register liveness
analyses with respect to the reduction in the number of loabistéore instructions executed; the column marked
Trivial corresponds to the base case, i.e., where no liveness iatiomis available. It can be seen that our liveness
analysis leads to a reduction in the number of loads from mmgimpabout 2.5-5%, with thgo program achieving
a reduction of over 9%. Compared to a simple context-insgasinalysis, the context-sensitive liveness analysis
yields an additional improvement of about 2.5-3%.

5We do not makea priori assumptions that a program will necessarily respect thiagalonventions with regard to callee-saved registers:
this is safe, though possibly conservative.



Program Original | Unreachable| Unreachable/Original
(no. of instrs)| (no. of instrs)
compress 25097 4391 0.175
gce 367760 14759 0.040
go 89346 5418 0.061
ijpeg 74307 11669 0.157
li 46117 5286 0.115
m88ksim 59656 6159 0.103
perl 114782 7554 0.066
vortex 186655 31626 0.169
| Geometric Mean: | 0.098 |

Table 3: Experimental Results: Unreachable Code Elinomnati

6 Optimizations

This section describes some of the more important optimizaimplemented withimlto. To maintain continu-

ity, with each such optimization we discuss its performanggact; our experimental methodology is described in
Section 7, while the raw data regarding execution times a@sgmted in Table 8 in Appendix A. The performance
impact of a particular optimization is measured by comggifie execution speeds attained when all optimizations
are turned on against that attained when only that optimoizas turned off. The details of the methodology used
for these experiments, including the benchmarks, compiiions, and hardware processor used, are given in
Section 7. It should be noted that because of interactiotwgdas different optimizations, the overall performance
improvement for a program is not usually the same as the suhedfmprovements for individual optimizations.

6.1 Unreachable Code Elimination

In compilers, unreachable code—i.e., code that will neveekecuted—typically arises due to user constructs

(such as debugging statements that are turned off by settftap) or as a result of other optimizations, and is

usually detected and eliminated using intra-proceduralyais. By contrast, unreachable code that is detected at

link time usually has very different origins: most of it isalto the inclusion of irrelevant library routines, together

with some code that can be identified as unreachable due tprtipagation of actual parameter values into a

function. In either case, link-time identification of uncdable code is fundamentally interprocedural in nature.
Even though unreachable code can never be executed, iiaatiom is desirable for a number of reasons:

1. It reduces the amount of code that the link-time optimizeeds to process, and can lead to significant
improvements in the amount of time and memory used.

2. It can enable optimizations that otherwise might not Haeen enabled, such as bringing two basic blocks
closer together, allowing for more efficient control trarshstructions to be used, or allowing for a more
precise liveness analysis which might trigger severalratpémizations.

3. The elimination of unreachable code can reduce the anodticeiche pollution” by unreachable code that is
loaded into the cache when nearby reachable code is exedutiylin turn, can improve the overall cache
behavior of the program.

4. The elimination of unreachable code simplifies the prsiogsof extended basic blocks (i.e., a sequence of
instructions where incoming control flow edges are allowelg at the top, but where there may be outgoing
control flow edges at intermediate points in the sequenteg & makes it unnecessary to check for certain
situations, such as an unreachable cycle of basic blockis¢tiuld otherwise prove to be problematic.
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Figure 2: Performance impact of constant computation dp#tion

Unreachable code analysis involves a straightforwardrdést traversal of the control flow graph, and is per-
formed as soon as the control flow graph of the program hasdmeputed. Initially, all basic blocks are marked
as unreachable, except for the entry block for the whole namgandBnknown, Which has an edge to each basic
block that has unknown predecessors (see Section 4). Thesertaen traverses the inter-procedural control flow
graph and identifies reachable blocks: a basic block is ndamr@chable if it can be reached from another block
that is reachable. Function calls and the correspondingrrdétiocks are handled in a context-sensitive manner:
the basic block that follows a function call is marked redatb@nly if the corresponding call site is reachable.

The amount of unreachable code detected in our benchmastsign in Table 3. These numbers do not
include no-ops inserted into reachable basic blocks fgnatient and instruction scheduling purposes. It can be
seen that the amount of unreachable code is quite signifitamtany programs, it exceeds 10%, and in one case,
the vortex program, it is almost 17%. On the average, about 10% of theuicttons in our benchmarks were
found to be unreachable. This is somewhat higher than thdtsex Srivastava, whose estimate of the amount of
unreachable code in C and Fortran programs was about 4%-%% [3

For our benchmarks, the primary impact of unreachable cliaénation is on code size: the measured impact
of this optimization on execution speed is small.

6.2 Optimization of Constant Value Computations

If it is possible to determine, from constant propagatiolaihg, that a value being computed or loaded into a
register is a constandlto attempts to find a cheaper instruction to compute the conistemthat register. (This
optimization could be generalized to cheap instructioruseges to replace high latency operations, such as mul-
tiplication.) The simplest case of this optimization inwe$ computing the values of constants using specific
registers whose values are known at each program point, Ipamegister$31, whose value is always 0, and the
global pointer registegp, whose value at any program point is known at link time. If signed) constark can

be represented with 16 bits, the instruction to computedbastant into a registeris replaced by the instruction
‘1da r, k($31)’ (aninstructionlda ry, m(rp) computes into registey the result of addingnto the contents

of rp, wheremis a signed 16-bit value). Similarly, if the difference been the constamtand the value of thegp
register is representable as a signed 16 bit integer, weatredame thing usingp as the base register. The basic
optimization is described by Srivastava and Wall [37]airto it is generalized so that a constant can be computed
from a known value in any register, not jut1 or gp.

Care must be taken to ensure that the constants involvedoaraddresses within the code sections of the
executable. Sincelto changes the code section, addresses therein are alma#t ¢ethange: such constants are
therefore excluded from this optimization. Data addreases ot a problem, by contrast, since the transformations
implemented withirm1to do not cause data addresses to change.

As an example of this optimization, consider the followingtatement, where, b andc are global variables
of type long, with addresses 0x1400021558, 0x1400021560, and 0x146682espectively:



a=>b+ c;

The code generated for this would typically be as follows:

(a) original code (b) initial optimized code (c) final optired code
(1) 1dq $r1, 16(gp) (1) 1dq $r1, 16(gp) (1) 1aq $r1, 16(gp)
(2)1dq $r2, 96(gp) (2') 1da $r2, 8(r1)
(3)1dq $r3, 32(gp) (3) 1da $r3, 16(rl)
(4)1dq $r4, 0($r1) (4) 1dq $r4, 0($r1) (4) 1dq $r4, 0($r1)
(5)1dq $r5, 0($r2) (5) 1dq $r5, 8($r1) (5) 1dq $r5, 8($r1)
(6) addq $r4, $r5, $r6 (6) addq $r4, $r5, $r6 (6) addq $r4, $r5, $r6
(7)stq $r6, 0($r3) (7') stq $r6, 16($r1) (7') stq $r6, 16($r1)

Here, anldq ra, k(rp) loads into register, the contents of the quadword (i.e., 8 bytes) at the addreaputed
by addingk to the contents of registeg; the stq instruction stores a quadword analogously. In the origiode,
instructions(1) — (3) load the addresses of the variables from the global addaé$s, tusing the global pointer
registergp to index into this table. Instructior(g) — (7) implement the actual additioalto is able to determine
the addresses loaded into registetsr2 andr3, since it it is able to determine the contentgpf and the global
address table is a read only area of memory. This allows aphgalue optimization of instructions (2) and (3),
which replaces the address loads with cheagerinstructions. Instructions (5) and 7) are also modified,ge u
r1 as the base register. The resulting code is shown in the colabelled “initial optimized code.” Note that
registersr2 andr3 are no longer used in this code: assuming that they are nod atethe end of this code
fragment, instruction$2’) and (3') will subsequently be deleted, resulting in the final optiizode sequence
shown.

Alto also tries to optimize the use of constants. Some Alphaliostms allow the use of a small immediate
value in place of the second operand regist@to attempts to exploit this feature whenever possible. If dhéy
first operand register is determined to be constantp will try to swap the operands of the instruction. This is
trivial if the instruction is commutative in its operandsitibequires more serious analysis and modifications if it is
not.

The performance impact of this optimization is illustrabeérigure 2. The programs that benefit the most from
this optimization aren88ksimperl, andvortex with improvements of around 10% to 13%; overall, the SPEBC-9
benchmarks experience a performance improvement of abdfit @ue to this optimization.

6.3 Elimination of Unnecessary Memory Operations

It is sometimes possible to identifyad (and, less frequentlgtore) operations as unnecessary at link time, and
eliminate such operations. Unnecessbsyds andstores can arise for a variety of reasons: a variable may not
have been kept in a register by the compiler because it istaafglor because the compiler was unable to resolve
aliasing adequately, or because there were not enouglefyetars available to the compiler. Atlink time, accesses
to globals from different modules become evident, makipggsible to keep them in registers [38]; inlining across
module boundaries, and of library routines, may make it iptss$o resolve aliasing beyond what can be done at
compile time; and a link time optimizer may be able to scaeamgisters that can be used to hold values that were
spilled to memory by the compiler. kilto, two distinct optimizations are used to eliminate unneagssiemory
operations:

1. Suppose that an instructibnstores a register to memory location (or loadsr; from memory locatior),
and is followed soon after by an instructignthat loads from locatioh into register,. If it can be shown
that that location is not modified between these two instructions, thead forwardingattempts to delete
instructionl, and replace it with a register move framto r,. It may happen that registey is overwritten
between instructionlg andls: in this casealto tries to find a free registeg (which may or may not be the
same asy) that can be used to hold the valuerin
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Figure 3: Performance impact of memory operation elimorati

If the instructionl; can now be shown to be dead, it can be deleted. In our currgrémentation, this
happens less frequently fetore than forload operations because liveness analysis for memory locations
is very limited.

2. Memory accesses can result from the saving and restofiogllee-save registers at function boundaries.
Some of these accesses may be unnecessary, either beeagggpsters saved and restored in this manner are
not touched along all execution paths through a functiobgeause the code that used those registers became
unreachable, e.g., because the outcome of a conditionatfbuld be predicted as a result of inlining or
interprocedural constant propagation, and therefore whget. To reduce the number of such unnecessary
memory accesseslto uses a variation oshrink-wrapping8] to move register save/restore actions away
from execution paths that don’t need them. The differen¢eden our implementation of shrink-wrapping,
and that originally proposed by Chow [8], is that we don’bellany execution path through a function to
contain more than one each of save and restore actions. #garthis, if a function saves and subsequently
restores a callee-save registdrut does not change the instructions to save and restorare eliminated.

The performance impact of this optimization is illustratedrigure 3. The programs that benefit the most from
this optimization arego and perl, with improvements in the neighborhood of 12-15%; overthié SPEC-95
benchmarks experience an improvement of around 5.7% dbéstopttimization.

6.4 Inlining

The motivations for carrying out inlining withimlto are three-fold. The first s to eliminate the function celiimn
overhead. Usually, inlining a function call gets rid of 2-+8tructions (the call and return instructions, load and
store instructions for saving and restoring the return eskliat the callee, and allocating and deallocating the
callee’s stack frame; a leaf function, i.e., one that doescatl any other functions, will not need to save and
restore its return address, and may not have to allocateck Stame). Additionally, register reassignment can
be used to reduce the overhead of saving and restoringeeg@tross call boundaries. The second is to exploit
callsite-specific information in the callee: for exampléasing relationships between the caller's code and the
callee’s code may become easier to determine after inljmihgn they would refer to the same stack frame rather
than two different frames (see Section 6.3). The final re&stmimprove branch prediction and instruction cache
behavior using profile-directed code layout (cf. Sectid).6Code growth due to inlining is controlled #1to as
follows: a function is inlined into a call site only if at Ieasne of the following hold:

(i) the callee is “small enough” that the calling and return sepes are together longer than its body;

(i) the call site under consideration is the only call site fat flunction; or
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Program Number of Instructions
no inlining (Nng.in1) [ Withinlining (Nin;) | Nno.ini/Nini
compress 21408 21632 1.010
gcce 317648 318784 1.004
go 78112 77760 0.995
ijpeg 60016 59936 0.999
li 37856 37952 1.003
m88ksim 50720 50912 1.004
perl 98864 100560 1.017
vortex 130032 129840 0.999
Table 4: Code growth due to inlining
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Figure 4: Performance impact of inlining

(iii ) the call site is “hot,” i.e., has a sufficiently high executmunt, and41to’s estimate of) the cache footprint
of the resulting code does not exceed the size of the ingrucache.

The reason for the last condition is that inlining withoutation to cache behavior can have a significant negative
effect on program performance. To address this problemt aedfisiteC to a functionf is considered for inlining

by alto if it satisfies the following criteria (here,aitical subgraphof a control flow graph refers to a subgraph
consisting of the hot basic blocks, together with enougleotilocks and edges to permit a path, within this
subgraph, from the entry node to each hot block and thendetexit node):

1. for each loof enclosing the call sit€, the number of instructions in the critical basic blockd pfogether
with the instructions in the critical subgraph of the calfeeshould not exceed the capacity of the level-1
instruction cache (in our case, using the Alpha 21164 psmrethis is 8 Kbytes, i.e., 2048 instructions); and

2. if Cis not within any loop, then the total number of instructi@amshe critical subgraphs of the caller and
the callee should not exceed the capacity of the level-tuogbn cache.

More sophisticated strategies are possible [28], but thage not been implemented withiato at this time.

The extent of code growth due to inlining is shown in Tablerining causes only a modest increase in code
size, in most cases in the neighborhood of 1%, and in a fewsdaads to small decreases in code size.

The performance improvements resulting from inlining dreven in Figure 4. The greatest benefits are ob-
served form88ksimwith an improvement of a little over 5%. In general, howetkee effect of inlining is small:
for the SPEC-95 benchmarks overall, the performance ingmnant due to inlining is less than 2%. We believe
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Figure 5: Performance impact of profile-directed code layou

there are three reasons for this: first, the input execuddtaee already been subjected to inlining by the compiler;
second, our inter-procedural constant propagation anstegdjveness analyses are precise enough that they do not
benefit significantly from inlining; and third, profile-doted code layout is able to mitigate much of the locality
effects of inlining.

6.5 Code Layout

Whenalto creates the interprocedural control flow graph for a progedlhanconditional branches are eliminated.
The responsibity of the code layout phase is to arrange thie btocks in the program into a linear sequence,
reintroducing unconditional branches where necessamterdre three important issues that should be considered
when determining the linear arrangement of basic blocks:

1. Branch mispredict penalties During the execution of a conditional branch, instructicare fetched from
memory before the branch target has been determined in tydarep the instruction pipeline full and
hide memory latencies. In order to do this, the CPU “pretlieis., guesses—the target of the branch. If
the guess is wrong, the instructions in the pipeline fetdheh the incorrectly predicted target have to be
discarded, and instructions from the actual target have tetched. The execution cost associated with an
incorrect prediction is referred to as a branch misprediaigity.

Older processors often use static branch prediction schesrge, where backward branches are predicted as
taken and forward branches as not taken. For such procebsdoenefit of a careful basic block layout is
obvious. More modern CPUs, such as the Alpha 21164 used iexpariments, use history-based dynamic
branch prediction schemes in the hardware, and result ie edtere branch misprediction penalties are
much less sensitive to code layout. For this reasamp does not consider this issue in determining code
layout.

2. Control flow change penalty. Since instruction fetching precedes instruction decgdm the instruction
pipeline, a change in control flow causes the fetch performieite decoding the instruction causing the
control flow change to be wasted, thereby incurring a smafbpmance penalty. Note that this is different
from the branch mispredict penalty discussed above, shis@énalty is incurred even for an unconditional
branch, which can always be correctly predicted. A changeirrol flow also increases the possibility of a
miss in the instruction cache.

This suggests the following guidelines for code layout: amditional branches should be avoided where
possible, and conditional branches should be orientedatatile fall-through path is more likely than the
branch-taken path.

3. Instruction cache conflicts: Because modern CPUs are significantly faster than memelyeding instruc-
tions to them is a major bottle neck. A high hit-rate of theriastion cache is therefore essential. Primary
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instruction caches typically are relatively small in singldave low associativity, in order to improve speed.
This makes it advantageous to lay out the basic blocks in grame in such a way that frequently executed
blocks are positioned close to each other, since this idiledg to lead to cache conflicts [30].

Alto implements two code layout schemes, one that explaitéiling information while the other does not. If
profiling information is available, our primary goal is todrece cache conflicts as far as possible. This is done
using a variant of the (bottom-up positioning) approach eiti® and Hansen [30], with minor modifications to
address the problems identified by Calder and Grunwald [T0jis attempts to lay out the basic blocks in a
way that minimizes the number of branches that will be takemuiatime; this has the effect that blocks that are
executed close to each other temporally tend to be placase ¢toeach other spatially. Currentiyl,to does not
carry out procedure placement, i.e., the positioning ofcihae for different procedures in a program guided by
call frequency information; this is mitigated, to some extdy the fact that the profile-guided placement of basic
blocks is carried out in an inter-procedural manner, sq thaexample, the block containing a frequently executed
function call can be placed close to the entry block of théeeallf no execution profile is available]l to attempts

to minimize the number of uncoditional branches while neiirihg the original code layout in the input program
as closely as possible. Here we describe the layout algotted when profile information is available.

When profile information is available, the code layout aitjwn proceeds by grouping the basic blocks in
a program into three sets: Thwt setconsists of the “frequently executed” (according to sonreghold, as
discussed below) blocks in the program; #tego setcontains all the basic blocks that were never executed; and
The cold setcontains the remaining basic blocks. The basic block lajmutach of these sets is determined
separately, and the resulting code sequences concatéoatathin the overall program layout.

Central to this discussion is the determination of the hgtise, of blocks that are executed “sufficiently
frequently.” Given a valu@ in the interval (0,1], we determine the largest executiegdrency thresholtl such
that the set of basic blocks that have execution frequemsiesedingN together account for at least the fraction
@ of the total number of instructions executed by the prograsitjdicated by its basic block execution profile).
The hot basic blocks in a program are defined to be the smallest sdboksthat(i) contain all blocks with
execution frequencies exceedihg and (i) together contain at least as many instructions as will fib ithe
primary instruction cache. For example, givgs= 0.95, the hot basic blocks of a program consist of those that
allow us to account for at least 95% of the instructions etegt@at runtime. If those basic blocks fill up the
instruction cache we have foumdlotherwise we will go beyond the 95% until we are able to fill th&truction
cache. The value i, and therefore the hot set, obviously depends on the thiceghwe determine the value gf
via empirical tuning, though in principle it could also beesfiied by the user. Our layout algorithm currently uses
¢ = 0.66; however, our experiments with a range of valueggordicates that, as long as tkero seis separated
from the frequently executed code, performance is not vengisive to the actual value gf

The performance impact of profile-directed code layout, parad to code layout without the use of profile
data (which adheres closely to the layout of the originalkedpi shown in Figure 5. Many programs can be seen
to benefit significantly from profile-directed code layolte greatest benefits are obtainedrf@8ksimperl, and
vortex with improvements of 11-13%. On average, the performafiteeoSPEC-95 benchmarks improves by
about 6.5% due to this optimization.

6.6 Instruction Scheduling

Since the various optimizations effected diyto can significantly alter the instruction sequence execuietth®
processor, an instruction rescheduling phase before eegtimng the executable is desirable. This is especially tru
since the Alpha 21164 processor can issue up to four ingtngper cycle, provided that appropriate constraints
are met (e.g., not more than one instruction in such a groopldhry to access memory, access the same functional
unit, etc.). Because of this, it is possible that a plaudibletime code transformation, such as the deletion of a
no-op instruction, can alter the instruction sequence in such y twat opportunities for multiple instruction
issues are reduced dramatically, with a correspondingitopgrformance. For these reasoasto carries out
instruction scheduling after its optimizations have beamied out and the layout of code determined based on
execution profiles.
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Figure 6: Performance impact of instruction scheduling

The instruction scheduler works on extended basic blocksi—its, a sequence of basic blocks that can be
entered only at the beginning, but where control may leavieatatmediate points in the sequence—subject to
the restriction that the basic blocks constituting the edézl basic block must be consecutive in the code layout.
Increasing the scope of the scheduler to handle extendédidasks has two benefits:

1. The scheduler might choose to move instructions ovechdacks boundaries if this improves the schedule.
This is especially useful for no-ops which have been intoedifor basic block alignment purposes.

2. Basic blocks are not scheduled in isolation: inter-bldegendencies are taken into account.

Since profile-directed code layout is carried out prior thestuling, our use of extended basic blocks achieves an
effect very similar to trace scheduling [20].

The performance impact of instruction scheduling is showRigure 6. Most programs show performance
improvements in the neighborhood of 2%, withrtexshowing the largest gain of about 9.5%.

7 Performance Results
7.1 Background

Previous sections have discussed the effects of specifigs@saand optimizations implementediihto. This sec-
tion presents the overall performance improvements a&thirsingalto, and compares this with the performance
obtained using inter-file and profile-directed optimizatavithin the compiler together with link-time optimiza-
tion using theom link-time optimizer [36]. The benchmarks we used to testdffect ofalto on C programs
were the eight programs in the SPEC-95 integer benchmatk soimpresss a file compression programgecis

a commonly used C compilegpis a game-playing prograrijpeg is an image compression progralinis a Lisp
interpreter;m88ksimis a simulator for the Motorola 88100 microprocesgugrl is a Perl language interpreter;
andvortexis a single-user object-oriented database transactiothinesrk. The size of each program, at both the
source and object code levels, is shown in Table 5: the nuoftsurce lines reported were measured using the
commandic -1 *.c.

For processing byglto, the programs were compiled with the vendor-supplied C dlem@5.2-036 invoked
ascc -04, with linker options to retain relocation information arddroduce statically linked executables. These
executables were instrumented using the vendor-suppligeile and executed on the SPEC training inputs to ob-
tain an execution profile that was providedafbto, which was invoked with default switches. We also compared
the performance improvements obtained usingo with those obtained using the OM link-time optimizer sup-
plied by the vendor [36]. For this, we obtained an executiafile for the base program usipdxie, as described
above, and then used the resulting profile to recompile eaadram, this time specifying that the compiler should
invoke OM, using the command
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Program | Source lines| functions| blocks | instructions|

compress 1420 316 | 5092 20707
gcc 193752 2465 | 77839| 353002
go 28457 945 | 16035 83929
ijpeg 17848 788 | 11682 62639
li 6916 722 | 9213 40832
m88ksim 17251 638 | 11582 53498
perl 23678 722 | 22765 97079
vortex 52624 1446 | 28884 155030

Table 5: Static characteristics of our benchmark programs
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Figure 7: Performance Results: C Programs

cc -04 -om -WL,-om_compress_lita -WL,-om_ireorg feedback,profile-input
-WL,-om_dead_code $(CFILES) -non_shared -o om.out -1lm

whereCFILES is a list of all the C source files for the program. Finally, weaaured the performance achievable
using all of the existing capabilities for static optimipat available under Digital Unix. For this, we compiled the
programs at the same optimization level as before, butiaddity with profile-directed inter-file optimization and
link-time optimization using OM [36], as described in Apjo@nB.

7.2 Performance of Optimized Code

The relative execution times of the different executablesioned as discussed in the previous section, based on
the SPEC reference inputs, are shown in Figure 7. The timirege obtained on a Compaq Alpha workstation
with a 300 MHz Alpha 21164 processor with a split primary dirmapped cache (8 Kbytes each of instruction
and data cache), 96 Kbytes of on-chip secondary cache, 2ddlojtoff-chip backup cache, and 512 Mbytes of
main memory, running Digital Unix 4.0. In each case, the a¥ea time reported was obtained as follows: the
run times for each of 7 runs of the executable, run in singlermode, were recorded; the smallest and largest of
these execution times were discarded; and the average ddrti@ning 5 times reported. The raw data regarding
execution times are presented in Table 8 in Appendix A

It can be seen, from Figure 7, that for most of the progranmedeshe executable obtained usiagto is
considerably faster than those obtained using OM, bothdgffias well as in conjunction with profile-guided
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Figure 8: Performance impact of profile information

inter-file optimization. In several cases, the differentehie improvements is quite significant: for exampie,
gets an 8% improvement with OM (9% when profile-guided irffileroptimization is also carried out), compared
to a 20% improvement withlto. Interestingly, we find that—with the exception@d andm88ksim—the use of
profile-guided inter-file optimization within the compil@oes not have significant additional effect on performance
beyond what is achieved using just OM; indeed, for two progranamelyjjpeg andvortex the executables
obtained with Ifo+FB+0Om are slightly slower than those attd using just OM. Overall, link-time optimization
using OM produces an average improvement of around 11% haenase of profile-guided inter-file optimizations
within the compiler in addition to link-time optimizatiorsing OM yields an average improvement of about 12.5%;
by contrast, link-time optimization usinglto produces an average improvement of 18.7%.

7.3 Effect of Profile Information

Several of the optimizations performed &yto, such as profile-guided code layout, inlining, instructschedul-
ing, etc., rely on the availability of profile informatiom general, it may happen, however, that profile information
is unavailable for a program, or is inapplicable becaus@thgram’s execution is highly input dependent, making
it difficult to find “representative” profiling inputs. It iserefore interesting to examine the performance achieved
by the code optimized bylto when no profile information is available.

The relative execution times when execution profiles areaitable, compared to the original execution times
as well as those when profiles are available, are shown inr€&i§u Two things are evident from this. First,
it can be seen that execution profiles have a significant paeince impact: on the average, the availability of
profiles yields an additional reduction in execution timeabbut 10%. The second is that, even if execution
profiles are not available, howevel,to is still able to achieve a reduction in execution time of au®@% on the
average. Interestingly, when we compare the performangetaf without profile information (Figure 8) with that
of OM using profile feedback as well as that of OM with profiledback that is combined with profile-guided
inter-file optimization within the compiler (Figure 7), wendl that the average performance improvement of 9%
achieved usinglto without profiles is not significantly worse than the 11% imgment for OM and the 12.5%
improvement for OM together with profile-guided inter-filptomization, even though the latter two use profile
information for their optimizations.

7.4 Static Linking: Impact of Libraries

As mentioned in Section 7.1, our experimental results wbtained using statically linked executables, i.e., where
the code for the library routines is linked into the execlgabatically by the linker. This is due partly to the fact
that, as mentioned in Section 1, one of our research obgctiv buildingalto was to investigate the effect
of analyses and optimizations that had access to the emtigrgm, including library routines. However, the
primary reason for the requirement for statically linkedextables is that1 to relies on the presence of relocation
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information for its control flow analysis (see Section 4)e thigital Unix linker 14 refuses to retain relocation
information for non-statically-linked executables. (Hosild be noted that, likelto, both the OM link-time
optimizer and the related ATOM low-level instrumentationltrequire statically linked executables.)

This immediately raises the question of the extent to whigtresults would hold if the static linking require-
ment were absent. As indicated above, the static linkingirement is fairly fundamental talto’s operation,
making it impractical to actually try to rualto on non-statically-linked executables. Instead, we madiieto
to ignore all library code when carrying out its analysesapiiimizations. Thus, inter-procedural liveness analysis
and constant propagation, confronted by a call to a librangine, conclude only that the calling conventions will
be respected, i.e., that the contents of callee-save eeg)isill be preserved. Inlining of library routines into use
code is disallowed, as are all optimizations of library ca@mfile-guided code layout, as discussed in Section 6.5,
places all library code in theero setaway from user code. We believe this provides a reasonapli®zimation
to the performance that could be attained using link-timgnuipation on programs that do not have library code
linked in statically.

The performance effects of ignoring library routines iswhan Figure 9. It can be seen that while there
is some performance benefit to statically linking in libraoytines, the effect is small: the overall performance
improvement drops from 18.7% for “standargl'to to 17.4% when analysis and optimization of library routines
is disabled, a change of only 1.3%. For two of the benchméirksidm88ksimthe version obtained by ignoring
libraries is actually slightly faster than that obtainethgs'standard”alto: we believe this is due to instruction
cache effects arising from differences in profile-direatede layout.

These results came as something of a surprise to us, sincadvexpected that analysis and optimization of
library code would have a larger effect on the overall perfance of a program. A detailed examination of the
benchmarks indicates that the reason for this is that the frexpiently executed code fragments typically do not
contain calls to library routines. We conjecture that thigynbe due at least partly to the fact that users believe
function calls to be expensive and therefore tend to avdld talibrary routines in hot spots in their programs.

7.5 Alto Resource Usage

Sincealto is a research prototype whose primary design goal was tHaatian of a variety of link-time op-
timizations, speed was not a primary design concern ana¢eavot of room for improvement. For example,
liveness information is always recomputed before any dptition that uses this information, even though this is
unnecessary if no “liveness-altering” transformationgehaccured since the last liveness computation.

Table 6 lists the optimization times fal to and compares it to the compilation time for those prograrimgus
cc -04, as well as the time taken to compile them using profile-giidter-file optimization as well as link-time
optimization using OM {c+Ifo+OM). It can be seen that in general,to is slower thancc+Ifo+OM by a factor
ranging from 2.7 to 5.9; the exceptiondsmpressfor whichalto is slower by a factor of 13.6. On averagéto
is slower by a factor of about 5.
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Program Processing time (secs) Ratio
cc (-04) | cc+lfo+OM | alto alto/cc+Ifo+OM
compress 1.61 1.76 23.95 13.61
gcce 162.67 226.01 1265.87 5.60
go 22.75 30.66 130.24 4.24
ijpeg 28.55 32.74 88.58 2.70
li 9.55 11.87 69.71 5.87
m88ksim 26.04 29.10 83.73 2.88
perl 38.44 45.68 225.08 4.93
vortex 67.24 85.02 394.31 4.64
| Geometric Mean: | 491 |

Table 6: Processing times for compile-time and link-timé&mjzation
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Figure 10: Processing Timesc, cc+lfo+OM, andalto
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Figure 11:alto memory usage

Apart from the absolute execution times, another intangstind important issue is that of the rate at which
this grows as the input size increases. To discuss this mgfaly, we have to specify what is meant by the
“size” of a program. For some of the analyses and optiminatisithinalto, such as constant propagation, the
time taken depends on the number of instructions; for offseich as liveness analysis, it depends on the number
of basic blocks; yet other inter-procedural analyses maedé on the number of functions in the program. To
accommodate these, we chose the “size” of a program to beith@sthe total number of functions, basic blocks,
and instructions in the program. Figure 10 plots the runtimg ofalto against the input size, according to this
measure, for each of our benchmarks. The line showaXes, obtained using a least square fit, indicates that the
running time ofalto is O(n41). We also plotted the running times f@) compilation usingcc -04 and (ii)
using inter-file optimization and the OM link-time optimizgt is not clear that our notion of size, or any similar
notion defined entirely in terms of low-level aspects suclthasnumber of instructions, appropriately measures
inputsizes in this case, but it nevertheless gives us some inaticat how processing time increases as the input
programs get larger). Least squares curve fitting indighegshe growth rate of execution time with program size
is O(n*>13) in the first case an®(n'>Y) in the second case.

Perhaps more important than execution time is the amouneaiony used: profligate memory usage can have
an adverse impact on execution time due to excessive pagidgn extreme cases can cause the program to crash.
Figure 11 shows how the memory actually usedaliyo for its data structures varies with the size of the input
program (where the “size” of a program is as described abheg)st squares curve fitting indicates that the growth
rate ofalto’s memory usage with input size @(n%°°2) 6

8 Discussion
8.1 Correctness

Since there is generally less high-level semantic infoilonaavailable at link timealto is at a disadvantage
compared to a traditional compiler. For example, input paats can contain arbitrary machine code that need
not necessarily correspond to source language programsndoren to assumptions satisfied by code generated
by the compiler. Examples of this include numerical libraoytines where control jumps from the middle of

8For simplicity of implementation, the current implemeitatof alto uses statically allocated arrays for the data structurasttbld
instructions, basic blocks, control flow edges, etc.: Feglt shows how much of these arrays is actually used, ovéoal, given input size.
If dynamically allocated memory were used instead, memsgga would increase by a small constant factor if we usedtfabimters, and
not at all if we required the use of 32-bit pointers via timso compiler flag; in either case, the sublinear asymptotic ¢iiawte would be
unaffected.
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one function into the middle of another without going thrbuge usual function call/return interface, and where
standard calling conventions about argument registerausey be violatedA1to makes a number of assumptions
about the behavior of the input programs: if these assum@toe violated, the output generatedsiyo may not
be correct.

There are three fundamental assumptionsdhab makes about the input program:

1. It assumes that the input programs they do not carry outeaddarithmetic with text segment addresses
(address arithmetic involving data addresses is not a @nobl The reason for this is that the optimizing
transformations carried out kajl t o almost inevitably result in changes to code addresseshidan cause
the program to behave incorrectly if it carries out nongivrithmetic involving such addresses. Given this
assumption, simple relocation information indicating @rhivords in the executable denote text segment
addresses is sufficient to solve the address translatidieprostatically. Relocation information also allows
us to determine which functions are potential candidatesniirect calls through function pointers and
callbacks, namely, any function whose address is takenhdtild be noted that this assumption is not
particular toalto, but is fundamental to most tools that rewrite executabés fie.g., instrumentation tools
such agixie andatom Because of this assumption, it turns out that the currersiae ofalto is unable to
handle executables generated by some functional langoggernentations, such as Objective Caml [27].

2. It assumes that the top-of-stack pointer resides in décpéat register and behaves as expected, i.e., always
points to the current top of stack.

3. Itassumes that the text segment is not modified in the eairsxecution (see below).

Sincealto does not currently support dynamically linked libariegrthare no unanalyzed modules in the program.
As mentioned in Section 7.4, the static linking requiremsmntot really fundamental to the waglto works,
but rather is a byproduct of the requirement for relocatitierimation in the input programs. As discussed in
Section 4, function calls whose targets cannot be resolkethandled using an artificial functidinknownWwith
worst-case dataflow assumptions; similarly, any functidroge entry point is marked as relocatable, and which
is therefore potentially a target of an unresolved indigatdl, is considered to be called froRynknown Because
of the worst-case assumptions made aliQuknown this is conservative and therefore sufficient for correstn
This also suffices for correctly (but conservatively) hamgllother situations involving statically unpredictable
runtime control flow, e.g., where the address of an excegtandler is passed by the program to the operating
system. If the issue of relocation information were to bekesd, calls to dynamically linked libraries could be
handled correctly using a similar approach (actually wedddo slightly better, since it can be assumed that such
calls conform to calling conventions, e.g., in their treatrnof argument registers and callee-saved registers). The
problem of operating system calls is solved similarly, wvith difference that it is not necessary to make worst case
assumptions about the call, since the interface and behafviystem calls is well documented.

Another problem that can arise is that of dynamic code ge¢ioeravhere code is generated and executed at
runtime and is therefore not available for inspection ptréogxecution. There are two possibilities here:

1. If the dynamically generated code is written into the dagment, as in most systems for dynamic code
generation (e.g., Tempo [14], DCG [18] and DyC [22])to’s treatment of the program is conservative
and safe, since in this case code thato believes to be static is in fact static and cannot be alteted a
runtime, while control transfers to or from dynamically gested code are handled conservatively. Calls
from static code to the dynamically generated code are septed withinalto as calls toF ynknown While
branches from static code to dynamic code are modelled aslbea tdBnknown(S€€ Section 4); sincelto
makes worst-case assumptions abknownand Bunknown Such code is therefore treated conservatively.
Calls or branches from the dynamically generated code tw stade require that the addresses of the static
code targets be taken and passed to the dynamic code. Thisnjieads to these addresses being marked
as relocatable, salto inserts, in the control flow graph for the static code, edgemfF nknownand/or
Bunknown @S appropriate. The result is that the control transfens fihe dynamically to the static code are
also treated conservatively.
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2. If the dynamically generated code is written to the teginsent, and can actually modify code thatto
believes to be statialto may fail (in the sense that thelto-optimized code may not be semantically
equivalent to the original program). One way around thisofm would be to bail out if the program
contains any instructions to flush the i-cache. This has eehlimplemented yet.

Finally, signal handling and volatile variables may posg@cttness problems. This was brought home to us while
experimenting with Scheme programs compiled with the Riglb.8 Scheme compiler [34], whose runtime system
used version 4.7 of the Boehm-Demers-Weiser conservainage collector [4]. The garbage collector contained
code of the following form:

[file: os_dep.c] [file: mark.c]
GC_find_limit () void GC_noop()
{ {
static volatile char *result; /* do nothing */
}

GC_setup_temporary_fault_handler();

for(;;) {
if (...) result += MIN_PAGE_SIZE;
else result -= MIN_PAGE_SIZE;
GC_noop (*result);

}

}
In this code, an apparently nonterminatifigr loop repeatedly changes the value of the pointer variable
result until it becomes an illegal address, so that dereferendingrior to the call toGC_noop() gen-
erates an exception. This exception is fielded by a handleugeprior to thefor loop by the call to
GC_setup_temporary fault_handler (): this allows control to leave theor loop. When processing (the ma-
chine code resulting from) this codel to inlined the call taGC_noop (), then eliminated the dereference operation
xresult after inferring that it was unnecessary since it was not ugdds, of course, got rid of the exception
raised by dereferencing an illegal address, and producedi@mminating program. We got around the problem
by rewriting the code slightly to forceC_noop () to use its argument; the problem was noticed independently,
and fixed (in a somewhat different way) in subsequent reteakthe garbage collector [5]. The problem in this
case arises from dead code elimination; one can imaginegmas problems with memory operation elimination
(Section 6.3) applied to variables declared torbgatile. It is possible to disable these particular optimizations,
via command-line switches, when invokiagto: a straightforward solution to these problems, albeit dva is
not entirely satisfactory esthetically, would be to have tiser disable these or other optimizations manually on
programs that contain such constructs. A functionally eajaint solution that may be preferable for users would
be to provide a command-line option specifying a “cons@reamode of operation where the only optimizations
performed are the conversion of indirect function calls iteat function calls using the results of constant prop-
agation (Section 5.1) and profile-directed code layoutt{§e®.5): this would in many cases still give nontrivial
performance improvements.

8.2 Efficacy of Optimizations

As Figure 7 shows, the link-time optimizations performedbyo can lead to significantimprovements in program
execution speeds, even on programs that have been sultjeetbijh degree of compile-time optimization. While
alto implements a large suite of classical intra- and inter-pdacal compiler optimizations, it turns out that a
relatively small number of these account for most of theqrenfince benefits due to link-time optimization:

— Conversion of indirect function calls (vigsr instructions) to direct calls (viasr instructions) produces a
speedup of about 10% on average. This optimization relie®ostant propagation to determine call targets.
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— Constant computation optimization, whose primarily Wneies are instructions loading constant ad-
dresses, i.e., addresses of global variables and funcfimm the read-only data segment into registers.
This allows the elimination of associatkxhd instructions and gives an average speedup of 6.4%.

— Memory operation elimination, which uses the results wériess analysis (to identify free registers) and
alias analysis (to disambiguate memory references) targit® unnecessatgad instructions. This yields
a speedup of 5.7% on the average.

— Profile-directed code layout, which uses execution praffiermation to lay out the code in such a way as
to improve instruction cache utilization. This produces®arage speed improvement of about 6.5%.

Of course, the optimizations are not all independent, sapeedup figures are not additive. There were several
aspects of these results that we found interesting:

1. Much of the performance benefits result from informatioatt is unavailable at compile time, namely, ad-
dresses of globals and functions. This information playsugial role in the first two optimizations men-
tioned above, i.e., optimization of indirect function sadind constant computations, and is also helpful in
the alias analysis that supports memory operation optiimizaWhile this may not be entirely unexpected,
in retrospect, it suggests that link-time optimizationikely to be useful for improving the performance of
programs regardless of the extent of compile-time optitiomecarried out.

2. Having the entire program available for examination apiihasization is useful, but not as much as we had
expected:

(a) Given that the input programs were compiled with a higgirele of optimization (-O4), the compiler
had already done a good job of register allocation. Therewegvertheless, more opportunities for
elimination of memory operations than we had expected. Mb#iese came about from interproce-
dural propagation of constant addresses and inter-proadodieness analysis.

(b) Profile-directed code layout, applied to the entire progwithout regard to procedure boundaries, was
also very useful for performance improvement. Of course,dbservation that profile-directed code
layout can yield significant performance benefits has beetterbg numerous authors, and is hardly
new: the point here is that having the entire program aviglfdy manipulation allows us to optimize
code layout for inter-procedural execution paths as well.

(c) The availability of library routines for analysis andtimpization had a surprisingly small effect on
performance (about 1.3% on average).

(d) The ability to carry out procedure inlining across madfille boundaries had less of a performance
impact than we had anticipated (under 2%). This may be dutyparthe fact that some inlining had
already been carried out by the compiler.

9 Related Work

Link-time code optimization has been considered by a nurabether researchers. Link-time register allocation,
aimed at allowing global variables to be kept in registeis muucing register saves and restores at inter-module
calls, is discussed by Santhanam and Odnert [33] and W4l [38e Zuse Translation System [13] and the
mld link-time optimizer [19] are aimed at reducing the cost o$tasction in object-oriented languages. Ayers
et al. describe a production-quality link-time optimizer for Hett-Packard systems running HP-UX [2], which
is distinguished by its ability to perform whole-prograntiagizations on very large programs, by virtue of the
careful attention paid to memory management issues. Thesewely on specially engineered compilers that
produce either object files containing special annotatiorassist the link-time optimizer [38], or an intermediate
representation of the program (together with semanticrimétion about it) that is subsequently optimized and
translated to executable code by the linker [2, 13, 19, 33}e @nplication of this is that performance-critical
modules written in hand-coded assembly language, thirgrpaftware such as libraries for which source code is
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not available, or code that is not in the source languageatgxbby the compiler, is not amenable to optimization
by these tools. Machine-level global optimization is dssed also by Johnson and Miller [25], but unliketo,
this system does not carry out interprocedural analysioatichizations.

Several authors have investigated whole program optiiizat compile time: examples include the Fortran-
D compiler and its successors, developed at Rice Univeia®ly which targets parallel and distributed scientific
programs; and the Vortex compiler for object-oriented laages [15], which targets a number of object-oriented
languages. There are three primary differences betwesmibrk and ours. The first is that, as compilers, they
target a particular language or family of languages; by ra@ttalto is able to process code generated from a
variety of languages, regardless of the source languagetlewas generated from, as long as the code respects the
assumptions discussed in Section 8.1. The second is thepidledic set of analyses and optimizations implemented
is different for each of the systems, since these dependanacteristics of the specific classes of applications the
language being compiled tends to be used for, e.g., depeaderalysis in the Fortran-D compiler, receiver class
prediction in Vortex. The third difference arises from tletfthat, as discussed in Section 8.2, the entities visible
at compile time tend to be different from those visible akltime, and as a result the sources of performance
improvement in a compiler that carries out whole-prograninogation will be different from those for a link-
time optimizer; our experiences indicate that, preciselytfiis reason, link-time optimization can be useful for
improving program performance even if the compiler caroigswhole-program optimization.

The systems that are the closest to ours are the OM [36, 3iKe §IP], and Etch [31] link-time optimizers.
The actions carried out by these systems are conceptuajhgimilar to ours (as they must be), though they differ
in details. Spike and Etch are intended for executablesingrunder Windows, on Compaq Alpha and Intel x86
processors respectively. Spike carries out three diffesptimizations [12]: hot-cold optimization [11], registe
allocation, and profile-directed code layout; of thesieso does not currently implement hot-cold optimization, but
implements the other two optimizations, as well as othessiileed earlier. Because they are targeted to different
operating systems, a direct comparisombfo against these systems was not feasible. Our comparisam©Mt
(see Section 7) indicate that the code producedim is considerably faster than that produced by OM. This is
due at least partly to the fact that OM implements relati¥ely optimizations, which are primarily intra-procedural
in nature and do not have the benefit of alias analysis orterdigeness analysis; in particular, optimizations that
need scratch registers are not carried out.

The Dynamo system takes a very different approach to glopinézation: it optimizes native executables
dynamically, as they execute [3]. This system is able toycaut optimizations across procedure and module
boundaries, and has the advantage of being able to hankés statically or dynamically linked libraries. The
main disadvantage is that dynamic optimization necegsacdurs some runtime overhead, and in some cases this
overhead can overwhelm the optimization benefits and yieldtdoss in performance. A related problem is that
the desire to keep the overhead of dynamic optimization $maas to avoid such problems, makes it difficult to
implement sophisticated but potentially expensive aresys optimizations.

10 Conclusions

Traditional compile-time analyses and optimizations anééd by the scope of the compilation unit: analyses and
optimizations are usually limited to individual procedsi(even interprocedural optimizations are generally fahit

to individual modules, and library routines are not avd#dbor either analysis or optimization). Since the entire
program is available for inspection after linking, linka@ optimization can overcome some of these deficiencies.
This paper describeslto, a link-time optimizer that we have implemented for the Campplpha. Experiments
indicate that even though it currently implements onlytreddy simple analyses—for example, checks for pointer
aliasing are only implemented in the most rudimentary amseovative way—the performance of the code gen-
erated by the system is, on the average, significantly bibterthat generated by the OM link-time optimizer [36]
supplied by the vendor.
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Execution Tim&sec)
Program Base Om Ifo+FB+Om alto Tom/ Thase | Tito/Toase | Taito/ Thase
(Tbase) (TO m) (Tifo ) (Talto)
compress| 28333 s 27554 s 27392s 25973 s 0.973 0.967 0.917
+0.67% +0.21% +0.49% +0.30%
gcc 29101s 23311s 22640 s 23056 s 0.801 0.778 0.792
+0.23% +0.46% +0.39% +0.50%
go 34049 s 32473 s 29905 s 30069 s 0.954 0.878 0.883
+0.05% +6.91% +0.23% +0.03%
ijpeg 33784 s 32955 s 33265 s 32693 s 0.975 0.985 0.968
+0.23% +0.11% +0.15% +0.02%
li 31881s 29301 s 28949 s 25436 s 0.919 0.908 0.798
+1.08% +0.61% +0.21% +0.88%
m88ksim 33322s 25488 s 23071s 22621s 0.765 0.692 0.679
+0.04% +0.04% +0.16% +0.06%
perl 24691 s 21041s 20393 s 18259 s 0.852 0.826 0.740
+0.18% +1.06% +0.26% +0.16%
vortex 49768 s 38829 s 39592s 31762 s 0.780 0.796 0.638
+0.23% +0.27% +2.01% +0.80%
Geometric Mean: | 0890 | 0874 | 0813

Table 7: Performance resulislto compared to OM and OM+Ifo+Feedback

A Performance Impact of Alto Optimizations: Raw Data

This section gives the raw performance data for our experisaé he timings were obtained on a Compaq Alpha
workstation with a 300 MHz Alpha 21164 processor with a gplitmary direct mapped cache (8 Kbytes each of
instruction and data cache), 96 Kbytes of on-chip secondaeiie, 2 Mbytes of off-chip backup cache, and 512
Mbytes of main memory, running Digital Unix 4.0. In each cadee execution time reported was obtained as
follows: the run times for each of 7 runs of the executablg,irusingle-user mode, were recorded; the smallest
and largest of these execution times were discarded; aravérage of the remaining 5 times reported. In addition,
the variation among the different timings is showntag®6, wherex is the magnitude of the maximum deviation
of any of the 5 timings considered from the mean, expressedp@scentage of the mean. Thus, given the set of
timings 91, 95, 98, 100, 101, 102, 110, we would discard the& (91) and highest (110), and use the remaining
5 numbers to obtain the timing 9+ 4.23%, where 99.2 is the mean of the remaining 5 times, and théman
deviation from the mean (99— 95= 4.2) is 4.23% of the mean. It can be seen, from Tables 7 and 8thbat
timings obtained for any particular executable do not shawmvariation: in most cases, the maximum deviation
from the mean is less than 1%.

Table 7 compares the performance improvements obtainédwito, compared to those obtained using OM
as well as those resulting from OM coupled with profile-gdideer-file optimization. Table 8 shows performance
data comparing the effects of different optimizations. Each benchmark, this table shows the performance
obtained when various different optimizations are turniédeach such performance number is presented in three
rows: the top row shows the (mean) execution time; the miduleshows the maximum deviation from the mean;
and the third row expresses the mean execution time as #fraiftthe execution time of the original, i.e., input,
program.
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Program | Original | noCProp | noCOpt | noMOpt | nolnline | nolLayout | noSched | noProfile | AllOpts
28333s| 27817s | 27821 s | 25961s | 26882s| 26929s | 26435s | 26397s | 25973 s
compress| £0.67% | +0.27% | £0.01% | +0.02% | +0.06% | +£0.10% | +0.11% | +0.03% | +£0.30%
(1.000) | (0.982) | (0.982) | (0.916) | (0.949) | (0.950) | (0.933) | (0.932) | (0.917)
29101s| 25618s | 24192s | 23058 s | 23545s| 25384s | 22666s | 26334s | 23056 s
gcc +0.23% | +1.56% | +0.04% | +0.02% | +0.56% | +0.10% | +0.04% | +0.02% | +0.50%
(1.000) | (0.880) | (0.831) | (0.792) | (0.809) | (0.872) | (0.779) | (0.905) | (0.792)
34049s| 32348s | 30897s| 35539s | 30816s| 31871s | 30873s | 31525s | 30069 s
go +0.05% | +£0.03% | £0.01% | +£0.00% | +1.70% | +4.88% | 4+0.00% | +0.00% | +0.03%
(1.000) | (0.950) | (0.907) | (1.044) | (0.905) | (0.936) | (0.907) | (0.926) | (0.883)
33784s| 32883s | 32674s | 32590s | 32854s| 32519s | 33229s| 32321s | 32693 s
ijpeg +0.23% | +£0.07% | £0.03% | £0.01% | +0.62% | +£0.22% | 4+0.02% | +0.01% | +£0.02%
(1.000) | (0.973) | (0.967) | (0.965) | (0.972) | (0.963) | (0.984) | (0.957) | (0.968)
31881s| 29320s | 27387 s | 26659s | 25894 s | 25968s | 26282s | 26258s | 25436 s
li +1.08% | +0.24% | +0.00% | +0.21% | +0.03% | +0.44% | +0.02% | +0.01% | +0.88%
(1.000) | (0.920) | (0.859) | (0.836) | (0.812) | (0.815) | (0.824) | (0.824) | (0.798)
33322s| 27566s | 25086s | 22486s | 23850s | 26127s | 23033s | 25355s | 22621s
m88ksim | +0.04% | +0.13% | +0.04% | +0.08% | +0.08% | +0.13% | +0.06% | +0.04% | +0.06%
(1.000) | (0.827) | (0.753) | (0.675) | (0.716) | (0.784) | (0.691) | (0.761) | (0.679)
24691s| 21299s | 20491s| 20932s | 18251s| 20513s | 18337s | 23713s | 18259 s
perl +0.18% | +0.12% | £0.08% | +£0.07% | +0.11% | +0.81% | 4+0.04% | +0.03% | +0.16%
(1.000) | (0.863) | (0.830) | (0.848) | (0.739) | (0.831) | (0.743) | (0.960) | (0.740)
49768 s | 38957s | 36743s| 33722s | 32277s| 36687s | 347.13s | 38038s | 31762s
vortex +0.23% | +0.46% | +0.42% | +0.96% | +0.22% | +2.28% | +0.68% | +0.44% | +0.80%
(1.000) | (0.783) | (0.738) | (0.678) | (0.649) | (0.737) | (0.697) | (0.764) | (0.638)
Geom.
mean 1.000 0.905 0.870 0.861 0.826 0.868 0.832 0.893 0.813
Key:
Original Input program
noCProp No constant propagation (Section 5.1)
noCOpt No optimization of constant value computations (Secti@®) 6
noMOpt No memory access optimizations (Section 6.3)
nolnline No inlining (Section 6.4)
nolLayout No profile-guided code layout (Section 6.5)
noSched No instruction scheduling (Section 6.6)
noProfile No profile information (Section 7.3)
AllOpts alto with all optimizations

Table 8: Performance impact of various optimizations
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B Compiling Programs using Inter-File Optimization and OM

To use both the inter-file optimization capability of the dens C compiler as well as the OM link-time optimizer,
we compiled the programs at the same optimization level Bisdebut additionally with profile-directed inter-file
optimization and link-time optimization using OM [36]. Ftiris, the programs were compiled as follows:

1. First, the programs were compiled as
cc -04 $(CFILES) -non_shared -o orig.out -1lm
whereCFILES is a list of all the C source files for the program.

2. The resulting executabterig. out was instrumented withixie and run on the SPEC training input for
the benchmark to produce an execution profile. A feedbackvile then generated from this profile using
the command

prof -pixie -feedback opt.out.fbo orig.out

3. The source files were recompiled with profile-guided arnerifile optimization turned on, using the feed-
back file generated in the previous step:

cc -04 -ifo -inline speed -feedback opt.out.fbo $(CFILES)
-non_shared -o ifo_fb.out -1m

The switch-ifo turns on inter-file optimization (this is the reason all th&l€s are specified together using
CFILES), and-inline speed instructs the compiler to inline routines to enhance exenwgpeed.

4. The resulting executabigfo_fb. out was again instrumented wighixie, using the SPEC training inputs.

5. The resulting execution profile was used to recompile tbgnam a final time, this time with the OM link-
time optimizer turned on as well:

cc -04 -ifo -inline speed -feedback opt.out.fbo
-om -WL,-om_compress_lita -WL,-om_ireorg feedback,ifo_fb.out
-WL,-om_dead_code $(CFILES) -non_shared -o ifo_fb_om.out -1lm

The reason it is necessary to regenerate the profile infasmédr OM is that the feedback-directed op-
timizations can change code addresses, rendering thealrigiofile useless from the perspective of OM.
Notice that in this step, two distinct sets of profiles arengaised: the feedback fitgpt . out . fbo, gener-
ated from the original profile obtained in step 2; and the fFdéir ifo_fb.out, obtained for the executable
resulting from feedback-directed inter-file optimizatiarstep 4.
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