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ABSTRACT  
Spike is an executable optimizer that uses 

profile information to place application code for 
improved fetch efficiency and reduced cache 
footprint.  This placement reduces the number of 
cache misses and the latencies they add to program 
execution time.  This paper presents extensions of 
Spike to take advantage of three additional 
performance opportunities: 1) optimization of the 
Unix kernel code, 2) prefetching to reduce latencies 
of long latency loads, and 3) prefetching for loads 
with predictable strides that are not detected at 
compile-time. 

INTRODUCTION  
Knowledge gained from profiles of program 

execution can be used to improve performance.  A 
programmer can use profiles to improve algorithms; a 
compiler to generate better code; a linker to produce 
better procedure placement; or an executable 
optimizer to rewrite the executable for better fetch 
and cache miss behavior.  Spike is an executable 
optimizer originally intended for NT applications and 
later modified for Tru64 Unix applications [Cohn97a, 
Cohn97b].  Initially Spike improved TPC-C 
performance by approximately 30% and other 
applications by lesser amounts.  However a number 
of performance opportunities remained.  This paper 
presents Spike modifications to exploit three of these 
opportunities.  The first opportunity is the time spent 
in the operating system code.  TPC-C Oracle spends 
roughly 30% of its time in the Unix kernel while 
SPECweb spends 85% of its time in the kernel.  The 
second opportunity is long latency loads.  On a 
NUMA machine like the Compaq GS320, accesses to 
non-local memory can take three times longer than 
local memory references.  If a prefetch can be placed 
earlier in the code path, the stall on the load is 
reduced or eliminated, especially when the prefetch 

can be overlapped with another memory access. The 
third opportunity is the latency of some loads that are 
executed repeatedly.  If the addresses accessed by the 
load exhibit a regular strided pattern, then the address 
for the next execution of the load is predictable and a 
prefetch can reduce its latency.  Many of these 
strided access patterns are recognized and prefetched 
by the compiler.  However some strided access 
patterns cannot be recognized by the compiler, and 
Spike can often profitably prefetch these.  

The remainder of this paper is organized as 
follows.  The next two sections discuss the profile 
collection and Spike's code layout algorithms for 
icache packing.  Section 4 discusses optimization of 
the Unix kernel and section 5 gives some results.  
Latency based prefetching is presented in section 6 
and stride-based prefetching in section 7. The 
remaining two sections discuss related work and 
conclusions.  

2. PROGRAM PROFILE COLLECTION    
The primary profile information used by Spike 

is a set of execution counts for the basic blocks of a 
program.  The counts can be exact counts collected 
by instrumenting the program [Smi91] or estimated 
counts collected with the DCPI statistical profiler 
[And97].  Instrumentation has the advantage of 
producing exact counts but the instrumentation 
increases execution time significantly. Also not every 
basic block can be instrumented in large complex 
programs like the Unix kernel where there is some 
use of self-modifying code.  Statistical profiles have 
the advantages of only minor increases in execution 
time and coverage of the entire image.  However the 
counts produced are estimates and the program may 
need to be run longer to get statistically significant 
counts.  For the Unix kernel and the large 
commercial applications reported in this paper, we 
have not seen significant performance differences 
between the optimized code produced from estimates 
and from exact counts.   For programs with a short 



run-time, such as the training workloads in 
SPECcpu2000, exact counts sometimes give better 
results. 

3. ICACHE PACKING  
The goal of Spike's code layout is improved 

instruction cache performance. Spike uses the 
algorithm introduced by Pettis and Hansen  [Pet90].  
The basic blocks of a procedure are arranged so that 
the frequent execution path is straight-line.  The 
rarely executed code is split into a separate cold 
procedure.  Finally procedures that call each other are 
placed close together so that they will not 
inadvertently conflict in the cache.  

To arrange a straight-line execution path, Spike 
first constructs a flow graph for the basic blocks of a 
procedure.  Edge weights are estimated from the 
basic block execution counts.  The blocks are joined 
into sequential traces based on edge weight and the 
infrequently executed blocks are split into a separate 
cold procedure.  Minor padding is added to improve 
branch prediction and fetch efficiency.  

To place procedures Spike constructs a 
procedure call graph.  The call counts are based on 
the execution counts for the basic blocks containing 
the calls.  Procedures connected by a frequently 
execeuted call are placed adjacent so that they will 
not conflict in the cache.  

4. SPIKE APPLIED TO UNIX KERNEL  
Getting Spike and the Tru64 Unix kernel to 

work together required minor changes in each.  Most 
changes were due to 1) the kernel's unique execution 
environment especially during boot, 2) the kernel's 
use of self-modifying code to gain additional 
performance, or 3) kernel assumptions about the 
order of  (or distance between) basic blocks. 

For example the kernel normally executes with 
a fixed kernel address established in a global pointer 
or gp register.  This gp register is used as a base 
register for many accesses to the kernel area.  Spike 
makes use of this register in adjusting some 
procedure calls.  However an adjusted procedure call 
would go astray if executed during boot prior to gp 
establishment.  Thus Spike needs kernel specific 
knowledge of which code executes prior to gp 
establishment. 

The kernel makes some use of self-modifying 
code in a few key performance critical areas.  Most 
such modifications either patch out a procedure call 
or insert a branch.  Prior to Spike the branch 
displacements could be known at link time.  However 
Spike changes the branch displacements when it 
changes procedure layout to avoid cache conflicts, 
and the kernelís self-modifying code must be able to 

accommodate the code rearrangement.  In particular, 
the kernelís self-modifying code must be prepared to 
deal with displacements that exceed the 21 bit limit in 
the Alpha branch instructions.  

One example of kernel assumptions about basic 
block and procedure order involves clearing and 
reclaiming a memory region.  There is a set of kernel 
procedures that are used only during system boot.  
Immediately following system boot the memory they 
occupy is cleared and reclaimed.  The reclamation 
relies upon the fact that this special set of procedures 
is linked at low addresses and that a symbol on the 
last basic block of the last procedure indicates the end 
of the region to be cleared.  Spike requires kernel 
specific knowledge of this boundary symbol to avoid 
placing normal kernel procedures in the cleared and 
reclaimed region.  

Spike eliminates unreachable code.  However 
for dynamically loaded drivers, the kernel makes use 
of code that is not reachable by normal means but is 
reachable through use of the symbol table.  Spike 
retains this code.  

Prototype application of Spike to the kernel 
presented some interesting challenges.  Some 
problems were difficult to find because the kernel 
crashed too early for establishment of any crash 
dump or debugging environment.  The most difficult 
to diagnose problems were the result of bugs in the 
front end tools feeding Spike.  For example 
relocation information in the original kernel 
executable [Obj01] is used by Spike to update 
addresses.  Errors in the relocation information 
resulted in optimized kernels that failed to boot.   
Independent checks are now run on this front end 
information prior to consumption by Spike.  

Minor changes were required in Spike to 
accommodate the kernel debugging tools.  To 
construct a traceback from a current program counter 
location, the kernel debugger scans back through the 
contiguous procedure code to the beginning, 
expecting to find instructions that allocated the stack 
frame and saved the return address.  When Spike 
forms a separate ì coldî  procedure from the rarely 
executed code, it prepends a copy of the instructions 
that allocate the stack frame and save the return 
address.  These instructions are strictly for use by the 
debugging tools when constructing a traceback; they 
are never executed.  Since they are associated with a 
cold procedure, they have negligible effect on 
instruction cache utilization. 

5. RESULTS FOR ICACHE PACKING   
Spike has been used to optimize a number of 

important applications including transaction 
processing (TPC-C), decision support (TPC-H) and 



web server (SPECweb).   Table 1 lists the 
benchmarks along with a short description and the 
machine model used to run them.  Table 2 gives the 
processor and memory characteristics of the 
benchmark machines.  All machines had 21264A 
(EV67) or 21264C (EV68) processors.  These 
processors have a 64 KB on chip Icache, a 64 KB on 
chip Dcache, and a unified board-level L2 cache.    

 Table 2.  Machines 

Some applications such as TPC-C were 
retuned after being optimized with Spike, to take 
advantage of the cycles freed up by the optimizations.  
All but TPC-H and SPECweb96 were submitted to 
the relevant benchmark organization [Tpc01, 
Spec01]. The benchmarking organizations seek to 
have benchmark run rules that result in little run to 

run variation in performance.  In practice we saw 
variations of up to two percent. 

 The performance gains on these applications 
for the icache packing optimization range from 5 to 
35 percent as shown in Figure 1. These performance 
gains are typical of the gains seen with Spike for 
large call-intensive programs. 

The goal of the icache packing is to improve 
fetch efficiency and reduce the cache footprint. These 
improvements are reflected in lower numbers for 
Icache (L1) misses and unified board-level cache 
(L2) misses.  The relative improvements in Icache 
and L2 misses are shown in Figure 2 for SPECweb96 
and TPC-C.  For SPECweb96 the original pre-Spiked 
kernel had an Icache miss rate of 16.3 misses per 
thousand instructions while the Spiked kernel gave a 
reduced miss rate of 8.4 Icache misses per thousand 
instructions.  The relative improvement in Icache 
miss rate for SPECweb96 was nearly 50 percent.   
Similarly the L2 miss rate was reduced from 1.74 to 
1.15 misses per thousand instructions for a relative 
improvement of 34 percent for SPECweb96. 

Figure 2.    Improvement in Miss Rate 

 
The cache miss data were collected from the 

21264A hardware performance counters using DCPI 
with ProfileMe [Dea97].  In some cases the events 
recorded using ProfileMe are not exactly the events 
that we would like to monitor.  In particular the event 

Benchmark Description Machine 
TPC-C Online transaction processing benchmark running inventory control against an Oracle 8.1.7 warehousing 

database measured in transactions per minute  
GS320  
GS160 

SAP-BW Business data warehouse application running Oracle 8.1.7 and SAP client application measured in query 
response time.  

GS160 

TPC-H Oracle 8.1.7 data warehouse benchmark running 22 ad hoc queries and 2 update functions measured in 
queries per hour. 

GS320 

Oracle App Oracle 11i application server running clients against an Oracle 8i database measured in number of users. GS320 
SPECweb99 Web server benchmark with dynamic content measured in simultaneous users. ES45 
SPECweb96 Older web server benchmark with only static content measured in operations per second. ES40 

Table 1  Benchmarks 

Model Processors  
Nr.  Type 

MHz L2 
Cache 

Memory 

GS320 32   21264A   731 4 MB 128 GB 
GS160 16   21264A   731 4 MB   64 GB 
ES45   4   21264C 1000 8 MB   32 GB 
ES40   4   21264A   667 8 MB     2 GB 
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used to indicate icache misses is more precisely a 
not-yet-prefetched event that requires some 
explanation.  When the 21264A misses in the icache, 
it initiates a fetch of the necessary cache line and also 
prefetches of the following three cache lines.  The 
not-yet-prefetched event occurs when a cache fill 
must be initiated and the fetch unit stalls for the full 
cache fill latency.  The event does not include those 
cases where a prefetch is in progress and only a 
partial cache fill latency is seen. Thus the not-yet-
prefetched event undercounts misses in the sense that 
it does not include the case where a prefetch is 
already in progress.  

The miss rate improvements from Spike can 
produce a measurable improvement in benchmark 
performance if overall miss latency accounts for a 
measurable portion of the original benchmark 
execution time.  Conversely a benchmark that spends 
little of its time in Icache misses and L2 misses for 
code access will show little improvement with Spike.  
SPECsfs (formerly LADDIS) is an NFS fileserver 
benchmark that seems to fall into this category. 

The portion of overall execution time 
attributable to Icache and L2 misses can be calculated 
using estimates of the miss latencies along with DCPI 
event counts for Icache misses (not-yet-prefetched) 
and L2 misses.  The miss latencies on the Alpha 
21264A are approximately 100+ cycles for L2 misses 
to memory, 50+ cycles for ITB misses, and 20 cycles 
for an Icache miss that hits in the L2.  

Figure 3 shows the estimated percentage of 
execution time attributable to misses for 
SPECweb96.  For the original base kernel 
approximately 20 percent of the execution time was 
due to Icache misses and another 10 percent due to 
L2 misses.  These numbers were cut to 13% and 8% 
for the Spiked kernel. 

 

Figure 3.    Normalized Execution Time Due to 
Misses in SPECweb 96 Benchmark 

These estimates assume that little of the miss 
latency is overlapped with execution.  This is almost 
certainly the case for the Icache misses and those L2 
misses which load instructions.  It is less certain for 
those L2 misses which load data.  This is because the 
stall occurs on the use of the load rather than 
occurring on the load itself.  Execution time between 
the load and use covers some of the memory latency.  
The prefetching optimizations discussed in the 
following sections seek to cover more of the latency 
by prefetching the data into the L1 Dcache ahead of 
the load.  
          Icache packing typically also reduces the 
memory footprint of a program and reduces the 
number of TB entries needed to map that footprint. 
Figure 4 gives an indication of the success of the 
icache packing algorithm in reducing memory usage. 

The plot shows cumulative execution frequency for 
the hottest 8K-byte pages in the original pre-spiked 
kernel and in the spiked kernel executing the 
SPECweb96 benchmark.  In the spiked kernel the 
most frequently executed page accounted for 40 
percent of the execution frequency while in the 
original base case the most frequently executed page 
accounted for only 20 percent and five pages were 
needed to account for 40 percent of the execution 
frequency.  Spike managed to place instructions 
accounting for 93% of the execution frequency in 8 
8K byte pages.  

6. LATENCY-BASED DATA PREFETCHING  
For TPC-C a significant amount of time is spent 

on memory stalls for data accesses [Bar98].   Spike is 
able to reduce memory stalls by selectively inserting 
prefetches ahead of those loads that have been 
measured to have high memory latency.  Once load 
latencies have been measured Spike evaluates each 
load to determine whether it is a candidate likely to 
benefit from prefetching.  For likely candidates Spike 
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identifies possible prefetch sites, estimates the 
benefits of each site based on prefetch distance and 
execution frequency, and inserts a prefetch at the best 
site if benefits outweigh costs.  Details of this general 
algorithm along with performance results are given in 
the following subsections. 

Selecting candidate loads: Two techniques 
based on DCPI are used to estimate load latency.  
The technique of value profiling [Bur00] periodically 
interprets a sequence of instructions and uses the 
cycle counter to measure the latency of any loads.  A 
second technique uses ProfileMe data to estimate 
instruction latency as the accumulated retire delay for 
an instruction divided by the number of retires.  Since 
the delay occurs on the use of a load rather than the 
load itself, Spike looks for loads whose consumers 
have long latencies.  The value profiles and/or the 
ProfileMe data needed for estimating load latency are 
held in an enhanced basic block database [Alb99].  

Prefetches are more likely to produce 
performance improvements if the corresponding 
loads are frequently executed and if the load misses 
and must go to memory.  Thus we consider only 
loads that are part of the 75% most frequently 
executed instructions and which have average load 
latencies greater than 50 cycles.  The remaining loads 
are eliminated from further consideration.   Further 
consideration would increase Spikeís run time 
without improving the optimized executableís 
performance. 

Insert Prefetch:  For each load we only 
consider prefetch insertion points that dominate the 
load and where the address can be easily calculated.  
An important concept is the notion of the "most 
distant (intraprocedural) prefetch point", mdpp.  
Intuitively, this is the earliest dominating point where 
the load address can be computed by adding a 
constant to the contents of some register.  To 
determine mdpp Spike walks up the use/def chain 
tracking the load address across register moves, 
addition of a constant, and register spill/restores.  
Possible insertion points for prefetches for a load are 
all dominating points on the path from the loadís 
mdpp to the load.  Figure 5 shows an example where 
we are trying to prefetch for the load, e=*d, at the 
bottom of the control flow graph. The load's mdpp 
can be found at the merge point of the two 
instructions writing register c.  All possible prefetch 
insertion points are marked with black bullets.  

 
We are currently investigating another 

mechanism that will lead to even earlier prefetch 
points.  We can exclude little or never executed parts 
of the control flow graph from the dataflow analysis 
for the register defining the load address.  Unlike 
regular dataflow analysis such as liveness, this does 

not cause correctness problems, because prefetching 
does not require accurate dataflow analysis. In our 
example above only the shaded nodes are executed.  
Excluding the two non-shaded blocks and the 
corresponding edges will result in a smaller control 
flow graph.  The new mdpp is marked as mdpp'.   The 
additional prefetch insertion points are marked with 
white bullets.  

Cost Benefit Analysis: The cost benefit analysis 
takes the list of possible prefetch points computed in 
the previous step and computes a benefit metric for 
each of them utilizing additional profile information.  
In our simplified model two properties affect the 
benefit of a prefetch: 1) its distance ahead of the load 
and 2) the likelihood that the prefetch is being 
utilized. 

The earlier we can prefetch the more likely it is 
that we can hide the memory latency and the higher 
the benefit.  Determining the exact distance between 
the prefetch and the load is difficult and we 
approximate it using the number of instructions on 
the shortest path between them.  We currently require 
that the prefetch be at least 8 instructions earlier than 
the load. 

c=b c=a

a=y+z

spill c    
foo( )    
restore c

d=c+16

e=*d

if(x) return

mdpp

mdppí

Figure 5.  Possible Prefetch Insertion Points 



Not all prefetches are useful.  We require that a 
prefetch dominate its associated load, but this does 
not guarantee that the load will always be executed.  
For example in Figure 5 we could prefetch at mdpp, 
evaluate x as true, and return from the procedure 
without ever reaching the load at e=*d.  A prefetch 
that was executed much more often than the load 
would frequently incur costs yet rarely return 
benefits.  Using path profiles it would be possible to 
accurately determine how often a prefetch is followed 
by execution of the load.  Since we do not have path 
profiles we approximate this by  the ratio of prefetch 
execution frequency to load execution frequency.  
We currently require that the prefetch be executed no 
more than twice as often as the load.  We favor points 
where the execution frequencies are equal.  

For Oracle TPC-C the above algorithms result 
in the insertion of approximately 70 prefetches into 
the Oracle image by Spike.  (While tuning, the 
number of inserted prefetches varied from 40 to 100.)  
The prefetches result in performance improvements 
of approximately 10 percent.   For the particular 
TPC-C machine configuration used for earlier results, 
Spike without prefetching gave a 31 percent 
improvement over the base while Spike with 
prefetching gave a 39 percent performance 
improvement.  

7. PROFILE-GUIDED STRIDE PREFETCHING 
If a load instruction accesses memory in a 

regular strided pattern, then the next address to be 
accessed is easily predictable.  Spike is able to insert 
prefetches and reduce memory stalls for these strided 
memory accesses [Luk01].  Using Spike to insert 
profile-guided prefetchs takes three steps: 1) 
instrumentation of the application, 2) collection of a 
stride profile, and 3) insertion of prefetch 
instructions.  

Instrumentation:  Load instructions are 
instrumented with an enhanced control-flow profiling 
tool.  We use heuristics to avoid instrumenting all 
loads. There is no need to instrument loads that have 
been prefetched by the compiler. These are typically 
loads in a loop with a constant stride known at 
compile-time. Also loads of scalars and small 
structures are not candidates for stride-based 
prefetching, and they do not need to be instrumented.  
These loads are recognized by their use of the stack 
pointer or the global pointer as the base register.  
Conceptually each of the remaining loads is 
instrumented.  In practice where several loads use 
different fixed displacements from the same base 
register, only the single base register value needs to 
be profiled.  Instrumenting all loads will slow an 
application down by a factor of 10.  By using 
heuristics to reduce the amount of instrumentation we 
can reduce profiling time by a factor of three without 
compromising our stride-based optimization. 

 
Stride Profile:  The instrumented application is 

run to collect a stride profile.  For each 
instrumentation point, the stride profile gives stride 
values, frequencies for the stride value, and run 
lengths for the stride value.  The run time of the 
instrumented application can be reduced through 
sampling without giving up accuracy.  

Prefetch Insertion:  Spike uses the stride 
profile to guide insertion of prefetches.  For an 
inserted prefetch one needs to determine both a stride 
value and the prefetch distance (i.e. how many 
iterations ahead to prefetch).  For each inserted 
prefetch Spike uses a fixed stride value.  An 
alternative would be to dynamically calculate a stride 
value at run time.  However,  profiles have shown 
that one stride value tends to dominate.  The added 
instruction and register costs of dynamically 
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Figure 6a  Integer Benchmark Improvements 
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calculating a stride at run time outweigh any 
associated benefits.  Ideally one would chose a 
prefetch distance such that the data arrives from 
memory just as it is needed.   We compute the 
prefetch distance as the memory latency (estimated as 
100 cycles) divided by the time in cycles to execute 
the loop body (estimated as the number of 
instructions in the loop multiplied by 1.4 cycles for 
execution of an average instruction).  If this number 
of iterations turns out to approach (or exceed) the 
average run length for the stride value in this loop, 
the prefetch distance is reduced.  If there are multiple 
prefetches to the same cache line, then some of the 
prefetches can be omitted.  

Stride Prefetch Results:  Spike with profile-
guided prefetching improves SPECint2000 and 
SPECfp2000 by an average of 2 percent and 9 
percent respectively.  The results for the individual 
benchmarks are given in Figures 6a and 6b.  Stride 
profiling is especially effective for equake and applu 
where improvements are 56% and 22% respectively.  
These benchmarks contain loops with accesses to 
regular structures that are allocated at runtime with 
calls to dynamic memory allocation procedures. The 
compiler can not insert prefetches because the 
existence of a regular reference pattern depends upon 
the runtime behavior of the dynamic memory 
allocation schemes.  However the regular reference 
pattern can be exposed with profiling, and prefetches 
inserted with Spike.  [Luk01] gives a more complete 
presentation of ideas and results for stride 
prefetching.  

8. RELATED WORK  
OM [Sri94] was the original binary optimizer 

for Unix applications on Alpha.  Alto [Mut01] is also 
a binary optimizer for Unix applications on Alpha.  
Etch [Rom97] is an optimizer for Windows 
applications on the Intel IA32 architecture. Vulcan 
[Sri01] is an optimizer for Windows applications on 
both Intel IA32 and Itanium processors.  

Ramirez et al. [Ram01] present a detailed 
analysis of the optimization of a transaction 
processing workload with Spike.  

Operating system restructuring has been studied 
by Schmidt et al. [Sch98] for the AS400 operating 
system and Speer et al. [Spe94] for HP-UX.  Our 
work differs in that Spike enables customer 
optimization of the UNIX kernel specifically for their 
workload.   

Software-controlled data prefetching has been 
studied extensively as a means to tolerate memory 
latency. Most work has been focused on using 
compilers to insert prefetches at the source level, 
with different schemes targeting different types of 
data access patterns. Mowry et al. [Mow92] proposed 

the first general algorithm for prefetching array-
based codes. Variations of their algorithm have been 
implemented in industrial compilers [San97,Ber95, 
Dos01]. On the other hand, Luk and Mowry [Luk96] 
proposed three schemes (greedy, jump-pointer, data-
linearization) for prefetching pointer-based codes. 
There are two major differences between these 
schemes and our two prefetching techniques. First, 
they solely rely on compiler analysis, while our 
schemes are largely based on profiling feedback. 
Hence, our schemes are potentially more accurate at 
the expense of an extra profiling pass. Second, our 
schemes insert prefetches into the binary directly and 
hence do not require any source code. This property 
is particularly attractive when either the source code 
is not available or re-compilation is infeasible. 

Other researchers have also investigated using 
memory profiles to assist prefetching. Abraham et al. 
[Abr93] demonstrated that selectively prefetching the 
small number of loads with high cache miss rates as 
identified by cache simulation can reduce memory 
stall significantly while only incurring a small 
amount of prefetching overhead. Mowry and Luk 
[Mow97] showed that the overhead can be further 
reduced without sacrificing much prefetching 
benefits by correlating cache miss rates with 
execution contexts. More recently, Barnes et al. 
[Bar99] used cache simulations to guide the insertion 
of stride prefetches into x86 binaries. Comparing 
these works against ours, we do not use cache 
simulations to select which loads need to be 
prefetched. Instead, we use DCPI [And97] (for 
latency-based data prefetching) or simple heuristics 
(for stride prefetching) to make that selection. As a 
result, we achieve significantly lower profiling 
overhead than the cases where cache simulations are 
used.  This reduced overhead is necessary for 
building a practical product. 

9. CONCLUSIONS  
Spike reduces the cache footprint of a program.  

This improves fetch efficiency and reduces cache 
misses for instructions.  The original Spike work 
reduced latencies in the application instruction 
stream.  We have extended this work in two 
directions.  First we have applied these techniques to 
the kernel instruction stream.  Second we have 
applied latency reducing techniques to the data 
stream.  Adding kernel and prefetching optimizations 
to the original Spike work has raised the overall 
performance improvements to 40% for TPC-C  
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