
Kernel Optimizations and Prefetch with the Spike Executable Optimizer

 Richard Flower, Chi-Keung Luk, Robert Muth, Harish Patil,
John Shakshober, Robert Cohn, and P. Geoffrey Lowney

Compaq Computer Corporation∗

∗ Luk, Muth, Patil, and Lowney are currently with Intel Corporation, Massachusetts Microprocessor Design Center,
Shrewsbury, MA.

ABSTRACT
Spike is an executable optimizer that uses

profile information to place application code for
improved fetch efficiency and reduced cache
footprint. This placement reduces the number of
cache misses and the latencies they add to program
execution time. This paper presents extensions of
Spike to take advantage of three additional
performance opportunities: 1) optimization of the
Unix kernel code, 2) prefetching to reduce latencies
of long latency loads, and 3) prefetching for loads
with predictable strides that are not detected at
compile-time.

INTRODUCTION
Knowledge gained from profiles of program

execution can be used to improve performance. A
programmer can use profiles to improve algorithms; a
compiler to generate better code; a linker to produce
better procedure placement; or an executable
optimizer to rewrite the executable for better fetch
and cache miss behavior. Spike is an executable
optimizer originally intended for NT applications and
later modified for Tru64 Unix applications [Cohn97a,
Cohn97b]. Initially Spike improved TPC-C
performance by approximately 30% and other
applications by lesser amounts. However a number
of performance opportunities remained. This paper
presents Spike modifications to exploit three of these
opportunities. The first opportunity is the time spent
in the operating system code. TPC-C Oracle spends
roughly 30% of its time in the Unix kernel while
SPECweb spends 85% of its time in the kernel. The
second opportunity is long latency loads. On a
NUMA machine like the Compaq GS320, accesses to
non-local memory can take three times longer than
local memory references. If a prefetch can be placed
earlier in the code path, the stall on the load is
reduced or eliminated, especially when the prefetch

can be overlapped with another memory access. The
third opportunity is the latency of some loads that are
executed repeatedly. If the addresses accessed by the
load exhibit a regular strided pattern, then the address
for the next execution of the load is predictable and a
prefetch can reduce its latency. Many of these
strided access patterns are recognized and prefetched
by the compiler. However some strided access
patterns cannot be recognized by the compiler, and
Spike can often profitably prefetch these.

The remainder of this paper is organized as
follows. The next two sections discuss the profile
collection and Spike's code layout algorithms for
icache packing. Section 4 discusses optimization of
the Unix kernel and section 5 gives some results.
Latency based prefetching is presented in section 6
and stride-based prefetching in section 7. The
remaining two sections discuss related work and
conclusions.

2. PROGRAM PROFILE COLLECTION
The primary profile information used by Spike

is a set of execution counts for the basic blocks of a
program. The counts can be exact counts collected
by instrumenting the program [Smi91] or estimated
counts collected with the DCPI statistical profiler
[And97]. Instrumentation has the advantage of
producing exact counts but the instrumentation
increases execution time significantly. Also not every
basic block can be instrumented in large complex
programs like the Unix kernel where there is some
use of self-modifying code. Statistical profiles have
the advantages of only minor increases in execution
time and coverage of the entire image. However the
counts produced are estimates and the program may
need to be run longer to get statistically significant
counts. For the Unix kernel and the large
commercial applications reported in this paper, we
have not seen significant performance differences
between the optimized code produced from estimates
and from exact counts. For programs with a short

run-time, such as the training workloads in
SPECcpu2000, exact counts sometimes give better
results.

3. ICACHE PACKING
The goal of Spike's code layout is improved

instruction cache performance. Spike uses the
algorithm introduced by Pettis and Hansen [Pet90].
The basic blocks of a procedure are arranged so that
the frequent execution path is straight-line. The
rarely executed code is split into a separate cold
procedure. Finally procedures that call each other are
placed close together so that they will not
inadvertently conflict in the cache.

To arrange a straight-line execution path, Spike
first constructs a flow graph for the basic blocks of a
procedure. Edge weights are estimated from the
basic block execution counts. The blocks are joined
into sequential traces based on edge weight and the
infrequently executed blocks are split into a separate
cold procedure. Minor padding is added to improve
branch prediction and fetch efficiency.

To place procedures Spike constructs a
procedure call graph. The call counts are based on
the execution counts for the basic blocks containing
the calls. Procedures connected by a frequently
execeuted call are placed adjacent so that they will
not conflict in the cache.

4. SPIKE APPLIED TO UNIX KERNEL
Getting Spike and the Tru64 Unix kernel to

work together required minor changes in each. Most
changes were due to 1) the kernel's unique execution
environment especially during boot, 2) the kernel's
use of self-modifying code to gain additional
performance, or 3) kernel assumptions about the
order of (or distance between) basic blocks.

For example the kernel normally executes with
a fixed kernel address established in a global pointer
or gp register. This gp register is used as a base
register for many accesses to the kernel area. Spike
makes use of this register in adjusting some
procedure calls. However an adjusted procedure call
would go astray if executed during boot prior to gp
establishment. Thus Spike needs kernel specific
knowledge of which code executes prior to gp
establishment.

The kernel makes some use of self-modifying
code in a few key performance critical areas. Most
such modifications either patch out a procedure call
or insert a branch. Prior to Spike the branch
displacements could be known at link time. However
Spike changes the branch displacements when it
changes procedure layout to avoid cache conflicts,
and the kernelís self-modifying code must be able to

accommodate the code rearrangement. In particular,
the kernelís self-modifying code must be prepared to
deal with displacements that exceed the 21 bit limit in
the Alpha branch instructions.

One example of kernel assumptions about basic
block and procedure order involves clearing and
reclaiming a memory region. There is a set of kernel
procedures that are used only during system boot.
Immediately following system boot the memory they
occupy is cleared and reclaimed. The reclamation
relies upon the fact that this special set of procedures
is linked at low addresses and that a symbol on the
last basic block of the last procedure indicates the end
of the region to be cleared. Spike requires kernel
specific knowledge of this boundary symbol to avoid
placing normal kernel procedures in the cleared and
reclaimed region.

Spike eliminates unreachable code. However
for dynamically loaded drivers, the kernel makes use
of code that is not reachable by normal means but is
reachable through use of the symbol table. Spike
retains this code.

Prototype application of Spike to the kernel
presented some interesting challenges. Some
problems were difficult to find because the kernel
crashed too early for establishment of any crash
dump or debugging environment. The most difficult
to diagnose problems were the result of bugs in the
front end tools feeding Spike. For example
relocation information in the original kernel
executable [Obj01] is used by Spike to update
addresses. Errors in the relocation information
resulted in optimized kernels that failed to boot.
Independent checks are now run on this front end
information prior to consumption by Spike.

Minor changes were required in Spike to
accommodate the kernel debugging tools. To
construct a traceback from a current program counter
location, the kernel debugger scans back through the
contiguous procedure code to the beginning,
expecting to find instructions that allocated the stack
frame and saved the return address. When Spike
forms a separate ì coldî procedure from the rarely
executed code, it prepends a copy of the instructions
that allocate the stack frame and save the return
address. These instructions are strictly for use by the
debugging tools when constructing a traceback; they
are never executed. Since they are associated with a
cold procedure, they have negligible effect on
instruction cache utilization.

5. RESULTS FOR ICACHE PACKING
Spike has been used to optimize a number of

important applications including transaction
processing (TPC-C), decision support (TPC-H) and

web server (SPECweb). Table 1 lists the
benchmarks along with a short description and the
machine model used to run them. Table 2 gives the
processor and memory characteristics of the
benchmark machines. All machines had 21264A
(EV67) or 21264C (EV68) processors. These
processors have a 64 KB on chip Icache, a 64 KB on
chip Dcache, and a unified board-level L2 cache.

 Table 2. Machines

Some applications such as TPC-C were
retuned after being optimized with Spike, to take
advantage of the cycles freed up by the optimizations.
All but TPC-H and SPECweb96 were submitted to
the relevant benchmark organization [Tpc01,
Spec01]. The benchmarking organizations seek to
have benchmark run rules that result in little run to

run variation in performance. In practice we saw
variations of up to two percent.

 The performance gains on these applications
for the icache packing optimization range from 5 to
35 percent as shown in Figure 1. These performance
gains are typical of the gains seen with Spike for
large call-intensive programs.

The goal of the icache packing is to improve
fetch efficiency and reduce the cache footprint. These
improvements are reflected in lower numbers for
Icache (L1) misses and unified board-level cache
(L2) misses. The relative improvements in Icache
and L2 misses are shown in Figure 2 for SPECweb96
and TPC-C. For SPECweb96 the original pre-Spiked
kernel had an Icache miss rate of 16.3 misses per
thousand instructions while the Spiked kernel gave a
reduced miss rate of 8.4 Icache misses per thousand
instructions. The relative improvement in Icache
miss rate for SPECweb96 was nearly 50 percent.
Similarly the L2 miss rate was reduced from 1.74 to
1.15 misses per thousand instructions for a relative
improvement of 34 percent for SPECweb96.

Figure 2. Improvement in Miss Rate

The cache miss data were collected from the

21264A hardware performance counters using DCPI
with ProfileMe [Dea97]. In some cases the events
recorded using ProfileMe are not exactly the events
that we would like to monitor. In particular the event

Benchmark Description Machine
TPC-C Online transaction processing benchmark running inventory control against an Oracle 8.1.7 warehousing

database measured in transactions per minute
GS320
GS160

SAP-BW Business data warehouse application running Oracle 8.1.7 and SAP client application measured in query
response time.

GS160

TPC-H Oracle 8.1.7 data warehouse benchmark running 22 ad hoc queries and 2 update functions measured in
queries per hour.

GS320

Oracle App Oracle 11i application server running clients against an Oracle 8i database measured in number of users. GS320
SPECweb99 Web server benchmark with dynamic content measured in simultaneous users. ES45
SPECweb96 Older web server benchmark with only static content measured in operations per second. ES40

Table 1 Benchmarks

Model Processors
Nr. Type

MHz L2
Cache

Memory

GS320 32 21264A 731 4 MB 128 GB
GS160 16 21264A 731 4 MB 64 GB
ES45 4 21264C 1000 8 MB 32 GB
ES40 4 21264A 667 8 MB 2 GB

31

24

6

12

5

12

6

0

5

10

15

20

25

30

35

O
ra

cl
e

TP
C

-C

O
ra

cl
e

SA
P-

BW

O
ra

cl
e

TP
C

-H

O
ra

cl
e

Ap
p

SP
EC

w
eb

96

SP
EC

w
eb

 9
9

Pe
rc

en
ta

ge

Application
Kernel

Figure 1. Spike Performance Gains

0%

10%

20%

30%

40%

50%

60%

Icache misses L2 misses

pe
rc

en
t i

m
pr

ov
em

en
t

web96
tpc

used to indicate icache misses is more precisely a
not-yet-prefetched event that requires some
explanation. When the 21264A misses in the icache,
it initiates a fetch of the necessary cache line and also
prefetches of the following three cache lines. The
not-yet-prefetched event occurs when a cache fill
must be initiated and the fetch unit stalls for the full
cache fill latency. The event does not include those
cases where a prefetch is in progress and only a
partial cache fill latency is seen. Thus the not-yet-
prefetched event undercounts misses in the sense that
it does not include the case where a prefetch is
already in progress.

The miss rate improvements from Spike can
produce a measurable improvement in benchmark
performance if overall miss latency accounts for a
measurable portion of the original benchmark
execution time. Conversely a benchmark that spends
little of its time in Icache misses and L2 misses for
code access will show little improvement with Spike.
SPECsfs (formerly LADDIS) is an NFS fileserver
benchmark that seems to fall into this category.

The portion of overall execution time
attributable to Icache and L2 misses can be calculated
using estimates of the miss latencies along with DCPI
event counts for Icache misses (not-yet-prefetched)
and L2 misses. The miss latencies on the Alpha
21264A are approximately 100+ cycles for L2 misses
to memory, 50+ cycles for ITB misses, and 20 cycles
for an Icache miss that hits in the L2.

Figure 3 shows the estimated percentage of
execution time attributable to misses for
SPECweb96. For the original base kernel
approximately 20 percent of the execution time was
due to Icache misses and another 10 percent due to
L2 misses. These numbers were cut to 13% and 8%
for the Spiked kernel.

Figure 3. Normalized Execution Time Due to
Misses in SPECweb 96 Benchmark

These estimates assume that little of the miss
latency is overlapped with execution. This is almost
certainly the case for the Icache misses and those L2
misses which load instructions. It is less certain for
those L2 misses which load data. This is because the
stall occurs on the use of the load rather than
occurring on the load itself. Execution time between
the load and use covers some of the memory latency.
The prefetching optimizations discussed in the
following sections seek to cover more of the latency
by prefetching the data into the L1 Dcache ahead of
the load.
 Icache packing typically also reduces the
memory footprint of a program and reduces the
number of TB entries needed to map that footprint.
Figure 4 gives an indication of the success of the
icache packing algorithm in reducing memory usage.

The plot shows cumulative execution frequency for
the hottest 8K-byte pages in the original pre-spiked
kernel and in the spiked kernel executing the
SPECweb96 benchmark. In the spiked kernel the
most frequently executed page accounted for 40
percent of the execution frequency while in the
original base case the most frequently executed page
accounted for only 20 percent and five pages were
needed to account for 40 percent of the execution
frequency. Spike managed to place instructions
accounting for 93% of the execution frequency in 8
8K byte pages.

6. LATENCY-BASED DATA PREFETCHING
For TPC-C a significant amount of time is spent

on memory stalls for data accesses [Bar98]. Spike is
able to reduce memory stalls by selectively inserting
prefetches ahead of those loads that have been
measured to have high memory latency. Once load
latencies have been measured Spike evaluates each
load to determine whether it is a candidate likely to
benefit from prefetching. For likely candidates Spike

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35

Number of pages (8K bytes)

Ex
ec

ut
io

n
Fr

eq
ue

nc
y

base

spike

Figure 4. Effects of Icache Packing

0%

5%

10%

15%

20%

25%

30%

35%

1 2

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e L2 miss

Icache
i

base spike

identifies possible prefetch sites, estimates the
benefits of each site based on prefetch distance and
execution frequency, and inserts a prefetch at the best
site if benefits outweigh costs. Details of this general
algorithm along with performance results are given in
the following subsections.

Selecting candidate loads: Two techniques
based on DCPI are used to estimate load latency.
The technique of value profiling [Bur00] periodically
interprets a sequence of instructions and uses the
cycle counter to measure the latency of any loads. A
second technique uses ProfileMe data to estimate
instruction latency as the accumulated retire delay for
an instruction divided by the number of retires. Since
the delay occurs on the use of a load rather than the
load itself, Spike looks for loads whose consumers
have long latencies. The value profiles and/or the
ProfileMe data needed for estimating load latency are
held in an enhanced basic block database [Alb99].

Prefetches are more likely to produce
performance improvements if the corresponding
loads are frequently executed and if the load misses
and must go to memory. Thus we consider only
loads that are part of the 75% most frequently
executed instructions and which have average load
latencies greater than 50 cycles. The remaining loads
are eliminated from further consideration. Further
consideration would increase Spikeís run time
without improving the optimized executableís
performance.

Insert Prefetch: For each load we only
consider prefetch insertion points that dominate the
load and where the address can be easily calculated.
An important concept is the notion of the "most
distant (intraprocedural) prefetch point", mdpp.
Intuitively, this is the earliest dominating point where
the load address can be computed by adding a
constant to the contents of some register. To
determine mdpp Spike walks up the use/def chain
tracking the load address across register moves,
addition of a constant, and register spill/restores.
Possible insertion points for prefetches for a load are
all dominating points on the path from the loadís
mdpp to the load. Figure 5 shows an example where
we are trying to prefetch for the load, e=*d, at the
bottom of the control flow graph. The load's mdpp
can be found at the merge point of the two
instructions writing register c. All possible prefetch
insertion points are marked with black bullets.

We are currently investigating another

mechanism that will lead to even earlier prefetch
points. We can exclude little or never executed parts
of the control flow graph from the dataflow analysis
for the register defining the load address. Unlike
regular dataflow analysis such as liveness, this does

not cause correctness problems, because prefetching
does not require accurate dataflow analysis. In our
example above only the shaded nodes are executed.
Excluding the two non-shaded blocks and the
corresponding edges will result in a smaller control
flow graph. The new mdpp is marked as mdpp'. The
additional prefetch insertion points are marked with
white bullets.

Cost Benefit Analysis: The cost benefit analysis
takes the list of possible prefetch points computed in
the previous step and computes a benefit metric for
each of them utilizing additional profile information.
In our simplified model two properties affect the
benefit of a prefetch: 1) its distance ahead of the load
and 2) the likelihood that the prefetch is being
utilized.

The earlier we can prefetch the more likely it is
that we can hide the memory latency and the higher
the benefit. Determining the exact distance between
the prefetch and the load is difficult and we
approximate it using the number of instructions on
the shortest path between them. We currently require
that the prefetch be at least 8 instructions earlier than
the load.

c=b c=a

a=y+z

spill c
foo()
restore c

d=c+16

e=*d

if(x) return

mdpp

mdppí

Figure 5. Possible Prefetch Insertion Points

Not all prefetches are useful. We require that a
prefetch dominate its associated load, but this does
not guarantee that the load will always be executed.
For example in Figure 5 we could prefetch at mdpp,
evaluate x as true, and return from the procedure
without ever reaching the load at e=*d. A prefetch
that was executed much more often than the load
would frequently incur costs yet rarely return
benefits. Using path profiles it would be possible to
accurately determine how often a prefetch is followed
by execution of the load. Since we do not have path
profiles we approximate this by the ratio of prefetch
execution frequency to load execution frequency.
We currently require that the prefetch be executed no
more than twice as often as the load. We favor points
where the execution frequencies are equal.

For Oracle TPC-C the above algorithms result
in the insertion of approximately 70 prefetches into
the Oracle image by Spike. (While tuning, the
number of inserted prefetches varied from 40 to 100.)
The prefetches result in performance improvements
of approximately 10 percent. For the particular
TPC-C machine configuration used for earlier results,
Spike without prefetching gave a 31 percent
improvement over the base while Spike with
prefetching gave a 39 percent performance
improvement.

7. PROFILE-GUIDED STRIDE PREFETCHING
If a load instruction accesses memory in a

regular strided pattern, then the next address to be
accessed is easily predictable. Spike is able to insert
prefetches and reduce memory stalls for these strided
memory accesses [Luk01]. Using Spike to insert
profile-guided prefetchs takes three steps: 1)
instrumentation of the application, 2) collection of a
stride profile, and 3) insertion of prefetch
instructions.

Instrumentation: Load instructions are
instrumented with an enhanced control-flow profiling
tool. We use heuristics to avoid instrumenting all
loads. There is no need to instrument loads that have
been prefetched by the compiler. These are typically
loads in a loop with a constant stride known at
compile-time. Also loads of scalars and small
structures are not candidates for stride-based
prefetching, and they do not need to be instrumented.
These loads are recognized by their use of the stack
pointer or the global pointer as the base register.
Conceptually each of the remaining loads is
instrumented. In practice where several loads use
different fixed displacements from the same base
register, only the single base register value needs to
be profiled. Instrumenting all loads will slow an
application down by a factor of 10. By using
heuristics to reduce the amount of instrumentation we
can reduce profiling time by a factor of three without
compromising our stride-based optimization.

Stride Profile: The instrumented application is

run to collect a stride profile. For each
instrumentation point, the stride profile gives stride
values, frequencies for the stride value, and run
lengths for the stride value. The run time of the
instrumented application can be reduced through
sampling without giving up accuracy.

Prefetch Insertion: Spike uses the stride
profile to guide insertion of prefetches. For an
inserted prefetch one needs to determine both a stride
value and the prefetch distance (i.e. how many
iterations ahead to prefetch). For each inserted
prefetch Spike uses a fixed stride value. An
alternative would be to dynamically calculate a stride
value at run time. However, profiles have shown
that one stride value tends to dominate. The added
instruction and register costs of dynamically

-10

0

10

20

30

40

50

60

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rte

x

vp
r

AV
G

sp
ee

du
p

(p
er

ce
nt

)

Figure 6a Integer Benchmark Improvements

-10

0

10

20

30

40

50

60

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

AV
G

Sp
ee

du
p

(p
er

ce
nt

)

Figure 6b Floating Point Benchmark Improvements

calculating a stride at run time outweigh any
associated benefits. Ideally one would chose a
prefetch distance such that the data arrives from
memory just as it is needed. We compute the
prefetch distance as the memory latency (estimated as
100 cycles) divided by the time in cycles to execute
the loop body (estimated as the number of
instructions in the loop multiplied by 1.4 cycles for
execution of an average instruction). If this number
of iterations turns out to approach (or exceed) the
average run length for the stride value in this loop,
the prefetch distance is reduced. If there are multiple
prefetches to the same cache line, then some of the
prefetches can be omitted.

Stride Prefetch Results: Spike with profile-
guided prefetching improves SPECint2000 and
SPECfp2000 by an average of 2 percent and 9
percent respectively. The results for the individual
benchmarks are given in Figures 6a and 6b. Stride
profiling is especially effective for equake and applu
where improvements are 56% and 22% respectively.
These benchmarks contain loops with accesses to
regular structures that are allocated at runtime with
calls to dynamic memory allocation procedures. The
compiler can not insert prefetches because the
existence of a regular reference pattern depends upon
the runtime behavior of the dynamic memory
allocation schemes. However the regular reference
pattern can be exposed with profiling, and prefetches
inserted with Spike. [Luk01] gives a more complete
presentation of ideas and results for stride
prefetching.

8. RELATED WORK
OM [Sri94] was the original binary optimizer

for Unix applications on Alpha. Alto [Mut01] is also
a binary optimizer for Unix applications on Alpha.
Etch [Rom97] is an optimizer for Windows
applications on the Intel IA32 architecture. Vulcan
[Sri01] is an optimizer for Windows applications on
both Intel IA32 and Itanium processors.

Ramirez et al. [Ram01] present a detailed
analysis of the optimization of a transaction
processing workload with Spike.

Operating system restructuring has been studied
by Schmidt et al. [Sch98] for the AS400 operating
system and Speer et al. [Spe94] for HP-UX. Our
work differs in that Spike enables customer
optimization of the UNIX kernel specifically for their
workload.

Software-controlled data prefetching has been
studied extensively as a means to tolerate memory
latency. Most work has been focused on using
compilers to insert prefetches at the source level,
with different schemes targeting different types of
data access patterns. Mowry et al. [Mow92] proposed

the first general algorithm for prefetching array-
based codes. Variations of their algorithm have been
implemented in industrial compilers [San97,Ber95,
Dos01]. On the other hand, Luk and Mowry [Luk96]
proposed three schemes (greedy, jump-pointer, data-
linearization) for prefetching pointer-based codes.
There are two major differences between these
schemes and our two prefetching techniques. First,
they solely rely on compiler analysis, while our
schemes are largely based on profiling feedback.
Hence, our schemes are potentially more accurate at
the expense of an extra profiling pass. Second, our
schemes insert prefetches into the binary directly and
hence do not require any source code. This property
is particularly attractive when either the source code
is not available or re-compilation is infeasible.

Other researchers have also investigated using
memory profiles to assist prefetching. Abraham et al.
[Abr93] demonstrated that selectively prefetching the
small number of loads with high cache miss rates as
identified by cache simulation can reduce memory
stall significantly while only incurring a small
amount of prefetching overhead. Mowry and Luk
[Mow97] showed that the overhead can be further
reduced without sacrificing much prefetching
benefits by correlating cache miss rates with
execution contexts. More recently, Barnes et al.
[Bar99] used cache simulations to guide the insertion
of stride prefetches into x86 binaries. Comparing
these works against ours, we do not use cache
simulations to select which loads need to be
prefetched. Instead, we use DCPI [And97] (for
latency-based data prefetching) or simple heuristics
(for stride prefetching) to make that selection. As a
result, we achieve significantly lower profiling
overhead than the cases where cache simulations are
used. This reduced overhead is necessary for
building a practical product.

9. CONCLUSIONS
Spike reduces the cache footprint of a program.

This improves fetch efficiency and reduces cache
misses for instructions. The original Spike work
reduced latencies in the application instruction
stream. We have extended this work in two
directions. First we have applied these techniques to
the kernel instruction stream. Second we have
applied latency reducing techniques to the data
stream. Adding kernel and prefetching optimizations
to the original Spike work has raised the overall
performance improvements to 40% for TPC-C

ACKNOWLEDGMENTS
We would like to thank Ernie Petrides and Jim
Woodward for their work and support for the kernel

project and its performance goals; Brian Allain, Tom
Tracy, and Carl Metzger for detailed kernel
benchmark data; Bill Gray for support of DCPI; Joe
Mario, Lucy Hamnett, Larry Gensch, and John
Williams for their work turning Spike and its support
tools into shipping products; and Gene Albert for his
work on the basic block database.

REFERENCES

[Abr93] S. G. Abraham, R. A. Sugumar, D.
Windheiser, B. R. Rau, and R. Gupta. Predictability
of Load/Store Instruction Latencies. Proceedings of
the 26th Annual ACM/IEEE International Symposium
on Microarchitecture, pages 139-152, December
1993.

[Alb99] G. Albert. A Transparent Method for
Correlating Profiles with Source Programs. 2nd
Workshop on Feedback Directed Optimization,
Haifa, Israel, Nov. 1999.

[And97] J. Anderson, L. Berc, J. Dean, S. Ghemawat,
M. Henzinger, S. Leung, R. Sites, M. Vandervoorde,
C. Waldspurger, W. Weihl. Continuous Profiling:
Where Have All the Cycles Gone?. ACM Trans. on
Computer Systems Vol. 15, Nr. 4, pp. 357-390,
1997.

[Bar98] L. A. Barroso, K. Gharachorloo, E.
Bugnion,. Memory System Characterization of
Commercial Workloads. 25th Intl. Symposium on
Computer Architecture, pp. 3-14, June 1998

[Bar99] R. Barnes, R. Chaiken, and D. M. Gillies.
Feedback-Directed Data Cache Optimizations for the
x86. 2nd ACM Workshop on Feedback-Directed
Optimizations, November 1999.

[Ber95] D. Bernstein, D. Cohen, A. Freund, and D. E.
Maydan. Compiler Techniques for Data Prefetching
on the PowerPC. Proceedings of the 1995
International Conference on Parallel Architectures
and Compilation Techniques, pages 19-26, June
1995.

[Bur00] M. Burrows, U. Erlingson, S-T. A. Leung,
M. T. Vandevoorde, C. A. Waldspurger, K. Walker,
W. Weihl. Efficient and Flexible Value Sampling. 9th
Intl. Conference of Architectural Support of
Programming Languages and Operating Systems, pp.
160-167, November 2000.

[Cohn97a] R. Cohn, D. Goodwin, P. G. Lowney.
Optimizing Alpha Executables on Windows NT with

Spike. Digital Technical Journal, vol. 9, no. 4, pp. 3-
20, 1997

[Cohn97b] R. Cohn, D. Goodwin, P. G. Lowney, and
N. Rubin. Spike: An Optimizer for Alpha/NT
Executables. The USENIX Windows NT Workshop,
Seattle, Wash., pp. 17ñ24, August 1997

[Dea97] J. Dean, J. E. Hicks, C. A. Waldspurger, W.
E. Weihl, and G. Chrysos. ProfileMe: Hardware
Support for Instruction-level Profiling on Out-of-
order Processors. Proc. 30th Annual Intl. Symp. on
Microarchitecture, Dec. 1997.

[Dos01] G. Doshi, R. Krishnaiyer, and K.
Muthukumar. Optimizing Software Data Prefetches
with Rotating Registers. Proceedings of the 2001
International Conference on Parallel Architectures
and Compilation Techniques, September 2001.

[Luk96] C. K. Luk and T. C. Mowry. Compiler-
Based Prefetching for Recursive Data Structures.
Proceedings of the 7th International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 222-233, October
1996.

[Luk01] C.K. Luk, et al.. Profile-Guided Post-Link
Stride Prefetching. in preparation for submission

[Mow92] T. C. Mowry, M. S. Lam, and A. Gupta.
Design and Evaluation of a Compiler Algorithm for
Prefetching. Proceedings of the 5th International
Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 62-73, October 1992.

[Mow97] T. C. Mowry and C. K. Luk.. Predicting
Data Cache Misses in Non-Numeric Applications
through Correlation Profiling. Proceedings of the
30th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 314-320, December 1997.

[Mut01] R. Muth, S. Debray, S. Watterson, K. De
Bosschere. Alto: A Link-time Optimizer for the
Compaq Alpha. Software-Practice and Experience,
31(1), pp 67-101, 2001

[Obj01] Object File and Symbol Table Format
Specification. in the programming documentation for
Tru64 Unix Version 5.1 available online at
http://tru64unix.compaq.com

[Pet90] K. Pettis and R. C. Hansen. Profile Guided
Code Positioning. Proc. ACM SIGPLAN Conf. on

Programming Language Design and Implementation,
pp 16-27, June 1990.

[Ram01] A. Ramirez, L. A. Barroso, K. A.
Gharachorloo, R. Cohn, J. Larriba-Pey, P. G.
Lowney, M. Valero. Code Layout Optimizations for
Transaction Processing Workloads. Proceedings of
the 28th Intl. Symposium on Computer Architecture,
pp. 155-164, June 2001

[Rom97] T. Romer, G. Voelker, D. Lee, A. Wolman,
W. Wong, H. Levy, B. N. Bershad, and J. B. Chen.
Instrumentation and Optimization of Win32/Intel
Executables. 1997 Usenix Windows NT Workshop,
pp 1-8, August 1997

[San97] V. Santhanam, E, Gornish, and W.-C. Hsu.
Data Prefetching on the HP PA8000. Proceedings of
the 24th Annual International Symposium on
Computer Architecture, pages 264-273, June 1997.

[Sch98] W. Schmidt, R. Roediger, C. Mestad, B.
Mendelson, I. Shavit-Lottem, V. Bortnikov-Sitnitsky.
Profile-directed Restructuring of Operating System
Code. IBM Systems Journal, 37(2), 1998

[Smi91] M. Smith. Tracing with Pixie. Tech. Rpt.
CSL-TR-91-497, Stanford University, Nov. 1991

[Spe94] S. E. Speer, R. Kumar, and C. Partridge.
Improving UNIX Kernel Performance Using Profile
Based Optimization. 1994 Winter USENIX, pp. 181-
188, Jan. 1994

[Spec01] Standard Performance Evaluation Corp,
http://www.spec.org

[Sri94] A. Srivastava and D. Wall. Link-Time
Optimization of Address Calculation on a 64-bit
Architecture. Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation,
June 1994

[Sri01] A. Srivastava, A. Edwards. Vulcan: Binary
Transformation in a Distributed Environment.
Microsoft Research Tech. Rpt. MSR-TR-2001-50,
April 2001

[Tpc01] Transaction Processing Council,
http://www.tpc.org

