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ABSTRACT
Data prefetching is an e�ective approach to addressing the
memory latency problem. While a few processors have im-
plemented hardware-based data prefetching, the majority of
modern processors support data-prefetch instructions and
rely on compilers to automatically insert prefetches. How-
ever, most prefetching schemes in commercial compilers suf-
fer from two limitations: (1) the source code must be avail-
able before prefetching can be applied, and (2) these prefetch-
ing schemes target only loops with statically-known strided
accesses. In this study, we broaden the scope of software-
controlled prefetching by addressing the above two limita-
tions. We use pro�ling to discover strided accesses that fre-
quently occur during program execution but are not deter-
minable by the compiler. We then use the strides discovered
to insert prefetches into the executable directly, without the
need for re-compilation. Performance evaluation was done
on an Alpha 21264-based system with a 64KB data cache
and an 8MB secondary cache. We �nd that even with such
large caches, our technique o�ers speedups ranging from 3%
to 56% in 11 out of the 26 SPEC2000 benchmarks. Our
technique has been incorporated into Pixie and Spike, two
products in Compaq's Tru64 Unix.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors|Optimiza-
tion; C.1.1 [Processor Architecture]: Single Data Stream
Architectures
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1. INTRODUCTION
Memory latency is one of the major obstacles that limit

the performance of modern microprocessors. In many recent
machines, it is quite common to take 100 cycles or more
to fetch a word from memory, during which hundreds of
instructions can potentially be executed on these multiple-
issue machines. Even worse, the gap between processor and
memory speeds is expected to grow in future processor gen-
erations.
Prefetching is a promising technique to cope with the

memory latency problem, and can be controlled by hard-
ware or software. Hardware-based schemes [9, 20, 28] typi-
cally look for patterns of previous accesses to predict future
behavior at run-time, while software-based schemes [7, 25,
26] rely on either the programmer or the compiler to in-
sert explicit prefetch instructions. Since software-controlled
prefetching requires minimal hardware support, many mi-
croprocessors today already support prefetch instructions.
Most commercial machines rely on compilers to automat-

ically insert prefetches by analyzing the source code. These
compilers (e.g., the IBM [5] and HP [30] compilers) typically
prefetch memory references in loops whose addresses have
static strides. While this approach works reasonably well,
it has two limitations. First, prefetching cannot be applied
when the source code is not available for compilation. This
is particularly a problem in optimizing commercial software,
libraries, or legacy codes. Second, the scope of prefetching
is largely constrained by the fact that the stride size must
be known at compile time. In applications with features
like dynamic memory allocation, pointers, and indirect ref-
erences, there are still a non-trivial number of cache misses
caused by references with strides that are not captured by
the compiler.
In this study, we address the above two limitations by

a technique called pro�le-guided post-link stride prefetching,
which serves as a complement to compiler-inserted prefetch-
ing. It is based on an observation that although many strides
are not compile-time constants, they are in fact highly pre-
dictable given the pro�le information collected from past
runs. The strides predicted via pro�ling are then used to in-
sert prefetches into the executable directly, without the need
for re-compilation.
Our technique has been incorporated into two existing

post-link pro�ling/optimization tools for the Alpha. More
speci�cally, we extend Pixie [34], which originally instru-
ments executables for control-
ow pro�ling, to collect stride-
related information. We also extend Spike [10, 12]|an op-
timizing tool for Alpha executables|to insert prefetches ac-
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(a) Code

arc* arcin;
node* tail;
...
while (arcin) f

tail = arcin!tail;
...
arcin = (arc t*)tail!mark;

g

(b) Memory Accesses

arcin:

tail:

-144B -144B -144B

-96B -96B -96B

Figure 1: Abstract version of an important loop nest
in the Spec2000 benchmark mcf.

cording to the stride pro�le collected. Performance results
on an Alpha 21264 system (a DS20E) demonstrate that our
technique speeds up SPEC2000 benchmarks that are already
aggressively optimized by as much as 56%.

1.1 An Overview
The rest of this paper is organized as follows. We begin in

Section 2 by performing two case studies. In Section 3, we
describe how our technique is implemented using Pixie and
Spike. Section 4 presents an experimental evaluation of our
technique on an Alpha 21264 system using the SPEC2000
benchmarks. Section 5 discusses related work, and �nally,
we conclude in Section 6.

2. CASE STUDIES
In this section, we discuss the strided references exhibited

in two SPEC2000 benchmarks: mcf and equake. They are
selected because they are the two benchmarks in their corre-
sponding groups (i.e. integer and 
oating point) that bene�t
the most from stride prefetching. In addition, their access
patterns are relatively easy to understand without the need
of looking at the entire program.

2.1 Mcf
Mcf is an application used for single-depot vehicle schedul-

ing. It is the integer benchmark in SPEC2000 that su�ers
the most from data cache misses. The DCPI [3] tool reports
that 26% of the total stall time in mcf (running on a DS20E
system which will be described in detail in Section 4.1) hap-
pens in the while-loop shown in Figure 1(a). It traverses a
list structure via two pointers, arcin and tail, as shown in
Figure 1(b). Pro�ling the values of these two pointers re-
veals that arcin and tail have strides of -144 bytes and -96
bytes, respectively, throughout the entire execution.1 These
strides originate from the fact that both arcs and nodes are
allocated in memory via calloc(), and that the list struc-
ture is not changed once it is created. With these strides,

1The magnitude of these two strides depends on both the
compiler and run-time system.

(a) Code

for (i = 0; i < nodes; i++) f
Anext = Aindex[i];
Alast = Aindex[i + 1];
...
Anext++;
while (Anext < Alast) f

...
sum0 += A[Anext][0][0]*v[col][0] +

A[Anext][0][1]*v[col][1] +
A[Anext][0][2]*v[col][2];

sum1 += A[Anext][1][0]*v[col][0] +
A[Anext][1][1]*v[col][1] +
A[Anext][1][2]*v[col][2];

sum2 += A[Anext][2][0]*v[col][0] +
A[Anext][2][1]*v[col][1] +
A[Anext][2][2]*v[col][2];

...
Anext++;

g
...
g

(b) Compiler's View

A[Anext][0] A[Anext+1][0]

A[Anext][0][0]
A[Anext+1][0][0]

A[Anext] A[Anext+1]

(c) Layout in Memory

A[Anext][0]

stride = 128B

stride = 128B

A[Anext+1][0]

A[Anext][0][0] A[Anext+1][0][0]

Figure 2: Abstract version of an important loop nest
in the Spec2000 benchmark equake.

we can easily determine any future pointer values down the
list from the current ones.

2.2 Equake
Equake is a program for simulating the propagation of

elastic waves in large basins. The core computation lies in
a sparse matrix multiplication routine, which contains the
nested loop structure shown in Figure 2(a). Our focus is
on the three dimensional matrix A[ARCHmatrixlen][3][3],
whose cache misses account for 70% of the total stall time.
Since this matrix is dynamically allocated, the compiler treats
it as an array of ARCHmatrixlen pointers, each pointing to
an array of three pointers, each in turn pointing to an array
of three doubles, as pictured in Figure 2(b). Nevertheless,
since all these arrays are allocated consecutively without
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foo

Pixie

Training
input foo.pixie

Spike

foo.pf

foo.sprof

foo

Instrumentation

Stride
Profiling

Prefetch
Insertion

Figure 3: The three major steps of pro�le-guided
post-link stride prefetching

intervention of allocation for other objects, the memory lay-
out in fact looks like the one shown in Figure 2(c). As
a result, there is a constant stride of 128 bytes between
&A[Anext][j] and &A[Anext+1][j] (where j = 0 to 2),
and also an 128-byte stride between &A[Anext][j][k] and
&A[Anext+1][j][k] (where j = 0 to 2, k = 0 to 2).2

3. PROFILE-GUIDED POST-LINK STRIDE
PREFETCHING

Before discussing the details of our technique, we �rst give
an overview of it. Figure 3 shows the three major steps in-
volved, including both the functionalities and software tools
used. They are explained below:

Instrumentation: The �rst step is to instrument the given
executable (i.e. foo in Figure 3) for pro�ling the strides
at the loads that are likely to cause cache misses. We
enhance Pixie to perform this new type of instrumen-
tation in addition to the existing control-
ow instru-
mentation.

Stride Pro�ling: The next step is stride pro�ling, where
we run the instrumented executable (foo.pixie) with
a training input set. It generates a pro�le (foo.sprof)
of the strides found at the loads selected in the �rst
step.

Prefetch Insertion: The �nal step takes the stride pro-
�le and inserts stride prefetches into the executable
(foo.pf) accordingly. A prefetch-insertion module has
been added to Spike including various optimizations
that maximize the bene�t of stride prefetching.

Having seen the overview, we now discuss the above three
steps in a greater depth.

3.1 Instrumentation
The �rst step is to decide which loads in the executable

need to be instrumented for stride pro�ling. Of course, the
simplest way is to instrument all loads. However, doing this
is expensive in terms of the overhead of stride pro�ling, and
is also unnecessary since previous research shows that cache

2Again, the magnitude of these two strides depends on the
compiler and run-time system.

(a) Naive Instrumentation

R1  R1 + 16;
R2  R2 + 8;
// ...
// both R1 and R2 are not redefined
// ...

StridePro�le(R1+24); //instrumentation
R3  load 24(R1);

StridePro�le(R2+64); //instrumentation
R4  load 64(R2);

StridePro�le(R1+48); //instrumentation
R5  load 48(R1);

StridePro�le(R2+96); //instrumentation
R6  load 96(R2);

(b) Optimized Instrumentation

R1  R1 + 16;
R2  R2 + 8;

StridePro�le(R1, R2); //instrumentation
// ...
// both R1 and R2 are not redefined
// ...
R3  load 24(R1);
R4  load 64(R2);
R5  load 48(R1);
R6  load 96(R2);

Figure 4: Examples of a naive instrumentation and
an optimized instrumentation for stride pro�ling

misses tend to be generated by only a small subset of static
loads in the program [1, 27]. Thus, we use the following two
heuristics to decide whether a load should be instrumented:

Not-scalar: Since references of scalars or small aggregates
rarely miss in the cache, they can be ignored for prefetch-
ing. On Alpha, these references are typically made o�
the global pointer ($gp) or the stack pointer ($sp).

Not-compiler-prefetched: If a load is already prefetched
by the compiler, it does not need to be considered for
stride prefetching. Thus, such type of loads are also
excluded for instrumentation.

While the above heuristics always accelerate stride pro�l-
ing (as fewer loads are instrumented), their performance im-
pact can be mixed, depending on the miss rates of the loads
that are ignored for stride pro�ling. Later in Section 4.2.3,
we will measure their performance impact.
Once we decide which loads are important, we are ready to

perform the actual instrumentation. A naive approach is to
do an one-to-one instrumentation, like the pseudo assembly
code shown in Figure 4(a), where one instrumentation call
is inserted for each load. Nevertheless, the example also
illustrates the following two opportunities for optimization.
First, it is not necessary to pro�le the e�ective address of

the load: Pro�ling the value of the base register is already
su�cient to detect the address strides (since the o�set will
remain the same). An implication of this is that loads that
share the same base register can also share the instrumen-
tation call. And a natural place to put the instrumentation
call is immediately after the point where the base register
is de�ned. For this purpose, we enhance Pixie to �nd the
de�nition points of registers in a 
ow graph, using an al-
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gorithm [31] resembling static single assignments (SSA) [2,
13].
Second, multiple instrumentation calls located at the same

place can be combined into a single instrumentation call.
In our example, applying these two optimizations together
reduces the number of instrumentation calls from four to
one, as shown in Figure 4(b). In general, as we will show
in Section 4.2.2, these optimizations are very e�ective at
reducing both the number of instrumentation calls and the
pro�ling time.

3.2 Stride Profiling
In this step, we run the instrumented program with a

training input set in order to pro�le the address strides of the
loads selected. Similar to the way that strides are detected
in Chen and Baer's hardware prefetching scheme [9], a stride
S is recognized if it appears twice in a row (i.e. Addressi �
Addressi�1 = S = Addressi+1 � Addressi). When there
are more than one stride, we record up to 10 of them per
load, which we found to be su�cient in most cases. Each
stride is associated with three pieces of information: its value
(including sign), its frequency, and the average run-length
of that stride. The run-length is de�ned as the number of
consecutive instances of a given load that share the same
stride. As we will discuss in Section 3.3, the run-length
is useful for determining how far ahead a load should be
prefetched.
As a tradeo� between accuracy and speed, stride pro�l-

ing can be either complete or sampled. Complete pro�ling
collects statistics from the entire execution without any skip-
ping. In contrast, sampled pro�ling collects statistics from
parts of the execution, with other parts skipped. We have
examined two approaches to sampled pro�ling. The �rst is
a periodic one, where statistics collection is turned on and
o� repeatedly during the entire execution. The second ap-
proach collects statistics for only the �rstN instances of each
load being pro�led, where N is reasonably large yet is still
small compared to the total execution count. While the �rst
approach works better for programs with di�erent phases in
the execution that lead to di�erent strides, we found that
the software overhead of turning on and o� statistics collec-
tion is so substantial that there is no signi�cant advantage to
using periodic sampling. Thus, we focus on evaluating the
second approach when we compare sampled pro�ling against
complete pro�ling later in Section 4.2.4.

3.3 Prefetch Insertion
In the �nal step, Spike reads the stride pro�le and inserts

prefetches into the executable. There are three subtasks
that Spike performs in this step: (i) determining the stride
to be used for prefetching if multiple strides are detected for
a particular load, (ii) computing the prefetching distance
for each strided load, and (iii) minimizing the number of
prefetches needed to be inserted. They are further discussed
in the rest of this section.

3.3.1 Choosing from Multiple Strides
When multiple strides are detected for a given load, Spike

has to decide which one should be used. Figure 5 shows for
the SPEC2000 benchmarks the distribution of the most fre-
quent stride vs. the less frequent ones for each static load
that exhibits strided accesses. On average, the most frequent
stride happens over 90% of time for integer and around 70%

The Most Frequent Stride

Less Frequent Strides

(a) Integer Benchmarks
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(b) Floating-Point Benchmarks
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Figure 5: Distribution of the most frequent stride
and less frequent ones.

of time for 
oating point. To cope with multiple strides,
there are two possible approaches, as shown in Figure 6.
Figure 6(b) is the approach where the most frequent stride
is selected from the pro�le. The prefetch o�set k can then
be statically computed. In contrast, Figure 6(c) shows the
approach where the stride is computed at every iteration.
This requires one free register (i.e. t in Figure 6(c)) and four
instructions in addition to the prefetch itself. Since �nding
free registers at post-link time is challenging in terms of en-
suring correctness, and we do not want to introduce spilling
code to free up registers, we adopt the static approach in
this study. Nevertheless, according to Figure 5, this would
still allow us to cover a majority of strided accesses.

3.3.2 Computing the Prefetching Distance
Once the stride is determined, the next step is to com-

pute the prefetching distance|the number of iterations to
prefetch ahead. A general formula for computing prefetch-
ing distance [26] is: D = d l

w
e, where l is the expected miss

latency and w is the estimated amount of computation be-
tween two consecutive references in cycles. For a strided
load L, w can be approximated by the average body length
of the innermost loop that encloses L. We have enhanced
Spike to compute the average loop body length based on
the control-
ow feedback collected via regular Pixie pro�l-
ing. For the miss latency l, we conservatively assume it to
be a L2-cache miss, thereby ensuring su�cient time to bring
in the data. Since w is now in terms of the average number
of instructions executed in a loop, we also multiply l by the
instruction-per-cycle (IPC). In our experiments, l and the
IPC were assumed to be 100 cycles and 1.4, respectively.
Another consideration in deciding the prefetching distance

is the run-length R of a stride. If R is signi�cantly greater
than the ideal prefetching distance D = d l

w
e, the actual

prefetching distance is simply D. However, if R is compa-
rable to D, something less than D should be used instead.
The rationale is that when we prefetch N references ahead,
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(a) Original

R2  load 16(R1);

(b) Statically Chosen Stride

// k is a constant equal to
// 16 + stride * prefetching distance
prefetch k(R1);
R2  load 16(R1);

(c) Run-time Stride Detection

t  R1 - t; // t has been holding
// the previous value of R1.
// So, (R1 - t) is the stride.

t  prefetching distance * t;
t  R1 + t;
prefetch 16(t);
t  R1; // save R1 for computing

// the next stride
R2  load 16(R1);

Figure 6: Two approaches to handling multiple
strides

the �rst N out of the R references in the run will not be
prefetched. Thus, the prefetching distance should not be so
large that many references at the beginning of the run are
not covered. In the case where R � D, the actual prefetch-
ing distance is set to R

2
, the mid-point of the run, in an e�ort

to balance between prefetch coverage and prefetch timeli-
ness.

3.3.3 Prefetch Minimization
The �nal step is to optimize away prefetches that are re-

dundant because there are already prefetches to the same
cache lines. This type of redundancy typically occurs when
nearby �elds in a structure or consecutive array elements are
separately prefetched. Our prefetch minimization algorithm
consists of four steps, which are explained below using the
example shown in Figure 7:

1. Prefetches that share the same base register are po-
tentially redundant if their o�sets are close enough.
Hence, we �rst logically group prefetches at the point
where their base registers are de�ned. For instance, all
the six prefetches shown in Figure 7(a) are considered
together for minimization at the de�nition point of R1
(i.e. R1  R1 + 8). If the base register has multiple
possible de�nitions, the con
uence point of these de�-
nitions will be used instead (the con
uence points are
essentially where the � functions in SSA are located).

2. Prefetches grouped at the same register de�nition point
are then classi�ed into two types: \must" or \may"
prefetches, according to the likelihood that the prefetch
will be executed between that de�nition point and the
end of the program. \Must" prefetches are those that
are certain to be executed, while \may" prefetches are
those that are uncertain. For instance, the \must"
prefetches with respect to the de�nition point of R1 are
prefetch 16(R1), prefetch 64(R1), prefetch 72(R1),
and prefetch 118(R1). The remaining two prefetches

(a) Before Prefetch Minimization

R1  R1 + 8;
prefetch 16(R1);
prefetch 64(R1);
if (...) then

prefetch 32(R1);
...

else
prefetch 1024(R1);
...

endif
prefetch 72(R1);
prefetch 118(R1);
...

(b) After Prefetch Minimization

R1  R1 + 8;
prefetch 16(R1); // Beginning of a 3-line span
prefetch 80(R1); // One line from the beginning
if (...) then

// prefetch 32(R1) is combined into the span
...

else
prefetch 1024(R1);
...

endif
// prefetch 72(R1) is combined into the span
prefetch 118(R1); // End of the span
...

Figure 7: An example of prefetch minimization,
with a cache line size of 64 bytes assumed.

are \may" prefetches. Both \must" and \may" prefetches
are computed via a backward data-
ow analysis.

3. We then compute the maximum possible number of
cache lines spanned by \must" prefetches. With this
information, we can �nd the minimum set of prefetches
that span the same cache lines. For example, the four
\must" prefetches in Figure 7(a) target addresses be-
tween 16(R1) and 118(R1), spanning at most three 64-
byte cache lines. These four prefetches can hence be re-
duced to three: prefetch 16(R1), prefetch 80(R1),
and prefetch 118(R1), which cover the same set of
lines. Note that \may" prefetches are not considered
in this step because we do not want to introduce ad-
ditional overhead by executing prefetches that are ac-
tually not needed in the original program.

4. Finally, any \may" prefetches whose data addresses
are already covered by the span of \must" prefetches
can be removed. Thus, in the example, prefetch

32(R1) is eliminated but prefetch 1024(R1) is not.
The ultimately optimized code is shown in Figure 7(b),
where either one or two prefetches are saved in exe-
cution, depending on the direction of the if-then-else
statement.

4. EXPERIMENTAL EVALUATION
We evaluated pro�le-guided stride prefetching on an Al-

pha 21264-based system. The experimental framework is
depicted in Section 4.1, and the performance results are dis-
cussed in Section 4.2.
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(a) Integer Benchmarks
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(b) Floating-Point Benchmarks
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Figure 8: Performance of pro�le-guided stride prefetching on SPEC2000. Execution time is normalized to
an aggressively optimized baseline.

Table 1: The memory hierarchy of our DS20E ma-
chine.

Line Size 64 bytes
I-Cache 64KB, 2-way set-associative
D-Cache 64KB, 2-way set-associative
Memory 32 in-
ight loads,
Parallelism 32 in-
ight stores,

8 in-
ight cache block �lls,
8 cache victims

O�-Chip 8MB, direct-mapped
Uni�ed L2-Cache
L1-to-L2 12 cycles (plus any
Miss Latency delays due to contention)
L1-to-Memory 80 cycles (plus any
Miss Latency delays due to contention)
L1-to-L2 6.9 GB/sec
Bandwidth
L2-to-Memory 2.6 GB/sec
Bandwidth

4.1 Framework
The test bed of our experiments was a DS20E Alpha work-

station [11], equipped with a 667-MHz 21264 processor [23]
and 2GB of main memory. The Alpha 21264 is an out-
of-order superscalar machine which can execute up to four
instructions per cycle. The memory hierarchy is the most
relevant component to our study, and hence is summarized
in Table 1.
We used the entire SPEC2000 suite [17] as our bench-

marks. The training data sets were used to generate the
stride pro�le, while the reference data sets were used for per-
formance measurement. For most benchmarks, the median
execution time of �ve runs was reported. However, galgel
and sixtrack required more runs due to the relatively large
variances observed in their execution times.

The benchmarks were �rst compiled using the standard
Compaq compiler version 6.3 with -O5 optimizations under
Tru64 Unix V5.1. At this optimization level, the compiler
inserts prefetches which are estimated as bene�cial. The
benchmarks were then further optimized by Spike to im-
prove their I-cache performance. Thus, the baseline of our
experiments was the best that we could get prior to stride
prefetching.

4.2 Results
We �rst report the overall performance improvement due

to pro�le-guided stride prefetching, followed by the overhead
of stride pro�ling. Next, we measure the performance im-
pact of the two heuristics used in instrumentation, as well
as that of prefetch minimization. Finally, we demonstrate
the e�ectiveness of sampled stride pro�ling.

4.2.1 Performance of Stride Prefetching
Our �rst set of results are shown in Figure 8, where the

execution time of stride prefetching is normalized to that
of the baseline. The �rst observation made from Figure 8 is
that stride prefetching is more e�ective on the 
oating-point
side than on the integer side. This is somewhat expected as

oating-point codes typically contain more regular data ac-
cesses and are more loop intensive. Nevertheless, we still see
over 4% speedups in four out of the 12 integer benchmarks.
The performance gains on the 
oating-point side are quite
substantial: Six programs are sped up by at least 10%, with
equake up by 56%. Although we do su�er slowdowns in
a few benchmarks, they are all quite mild (at most 3% in
the case of twolf). On average, stride prefetching speeds up
the integer benchmarks by 2% and the 
oating-point bench-
marks by 9%.
To understand the performance results in a greater depth,

we used Atom-based cache simulation [35] to estimate the
data tra�c between the D-cache and the L2 cache. The
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(b) Floating-Point Benchmarks
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Figure 9: Data tra�c between the D-cache and the L2 cache (O = original, S = with stride prefetching).

results are shown in Figure 9, where the two bars of each
benchmark correspond to the original case (the O bar) and
the case with stride prefetching (the S bar). Each bar rep-
resents a percentage of the original amount of data trans-
fer between the D-cache and the L2 cache, and it is fur-
ther divided into three categories of D-cache misses: load,
store, and prefetch. Ideally, we would like to convert all load
misses into prefetch misses, while at the same time gener-
ate no extra prefetches (Note: D-cache hits will not show
up in Figure 9 as they do not generate any requests to the
L2 cache). Three benchmarks (eon, gcc, gzip) are missing
in Figure 9 owing to a bug in Atom that prevents it from
instrumenting the spiked version of these three programs.
Fortunately, as we see Figure 8, these three benchmarks are
of less interest since stride prefetching has little impact on
their performance.
Figure 9 illustrates that the performance bene�t we see in

Figure 8 is due to the successful conversion of load misses
into prefetches by stride prefetching. This is most noticeably
in cases like mcf, applu, and equake. Figure 9 also shows
that stride prefetching increases the total tra�c by 10% or
less|the only two exceptions are twolf and facerec. Over-
all, bandwidth does not appear to be a serious problem here.

4.2.2 Overhead of Stride Profiling
Recall from Figure 4 in Section 3.1 that there are two

approaches to instrumenting programs for stride pro�ling:
naive or optimized. Figure 10 compares the number of static
instrumentation points generated by each approach. Obvi-
ously, the optimized approach is very e�ective at reducing
the number of instrumentation points|it is reduced by a
half or more in most cases. This advantage is a consequence

of sharing instrumentation calls across loads that have the
same base registers and of merging instrumentation calls at
the same program points.
Figure 11 shows how much pro�ling time is actually saved

by this reduction in instrumentation calls. The pro�ling
time is expressed as a percentage of the time taken to run
the uninstrumented program with the same training input.
We �rst note that the stride pro�ling overhead is in the same
order as that of some other software-based value pro�lers [6],
which typically slow down the program by 10 to 30 times.
Optimized instrumentation is very helpful to 
oating-point
benchmarks|it cuts down their pro�ling time by nearly
two-thirds on average. Nevertheless, it is less e�ective on
the integer side. In fact, optimized instrumentation per-
forms a little worse than naive instrumentation in crafty,
gap, gzip, and perlbmk. A possible reason for this is that
putting instrumentation at the de�nition point of the load's
base register (as done in optimized instrumentation) may in-
troduce additional overhead on other paths that go through
the de�nition point. For these cases, other means like sam-
pling become more important for reducing pro�ling over-
head, as we will discuss in Section 4.2.4.

4.2.3 Performance Impact of Instrumentation Heuris-
tics and Prefetch Minimization

In Section 3.1, we have introduced two heuristics for se-
lecting critical loads to pro�le: not-scalar and not-compiler-
prefetched. While they always reduce pro�ling time, their
performance impact is less clear. Hence it is measured and
shown in Figure 12. For each benchmark, the �rst three bars
(from left to right) correspond to the following three sce-
narios: (i) all loads were instrumented, (ii) only not-scalar
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(b) Floating-Point Benchmarks

||0

|20000

|40000

|60000

|80000

 

  N
u

m
b

er
 o

f 
In

st
ru

m
en

ti
o

n
 P

o
in

ts

10599
4052

ammp

27087

12347

applu

28537

14470

apsi

9089
4239

art

7882
3717

equake

26212

12914

facerec

80869

32904

fma3d

43423

16210

galgel

24434

12060

lucas

25150

11594

mesa

23137

11675

mgrid

60519

26459

sixtrack

23055

11967

swim

22430

11511

wupwise

Figure 10: Number of static instrumentation points with naive and optimized instrumentation.

loads were instrumented, and (iii) only not-scalar and not-
compiler-prefetched loads were instrumented. To isolate the
performance impact of these heuristics, we disabled prefetch
minimization (described in Section 3.3.3) in the �rst three
bars. The last bar corresponds to adding prefetch minimiza-
tion to scenario (iii). Note that the last bar is equivalent to
the case already shown in Figure 8.
Figure 12 shows that little performance is lost with not-

scalar and not-compiler-prefetched heuristics. In fact, they
do improve performance in a few benchmarks, most promi-
nently in galgel. This is because these heuristics avoid
adding stride prefetches for loads that tend to hit in the
cache or those that are already prefetched by the compiler.
Comparing the third and fourth bars in Figure 12 also

reveals the e�ectiveness of prefetch minimization. While the
average performance gain is small (1% for the 
oating-point
benchmarks), it is particularly e�ective in eon, applu, and
galgel.

4.2.4 Effectiveness of Sampled Stride Profiling
Our �nal set of results demonstrate the e�ectiveness of

sampled stride pro�ling. This is the approach where we
collect stride statistics for only the �rst 10,000 occurrences
of each of the loads selected. The purpose of this experiment
is to �nd out whether pro�ling time can be substantially
saved by sampling while maintaining su�cient accuracy so
that the performance gains are mostly preserved.
A comparison in the overhead of complete and sampled

stride pro�ling is shown in Figure 13. As we can see, sam-
pling speeds up the pro�ling process by 58% for integer and
by 41% for 
oating-point. With sampling, the slowdowns
of stride pro�ling are 2 to 15 times, which are quite en-
couraging given that the slowdowns of software-based value
pro�lers [6] are typically 10 to 30 times.
The performance impact of sampled stride pro�ling is

shown in Figure 14. The good news is that sampling does
not degrade performance in most cases. The only exception
is mcf, where about one-tenth of the strided loads found by
stride pro�ling are di�erent between complete and sampled
stride pro�ling. Overall, sampling only the �rst 10,000 ref-
erences works reasonably well for SPEC2000.

5. RELATED WORK
Prefetching has been an active area of research since it was

�rst introduced. Meanwhile, many machines have adopted
some form of prefetching, mostly in software [5, 15, 23, 30]
with a couple in hardware [18, 37]. One way to categorize
prefetching schemes is based on the data access patterns
that they target. Hence, they can be broadly classi�ed as
sequential [33], strided [9, 14, 19], streamed [16, 21, 32],
data-dependency based [28], pointer based [22, 25, 29], and
address-correlation based [8, 20, 24]. Since our focus is on
strided accesses, we compare our scheme with the other ap-
proaches to stride prefetching in the rest of this section.
Hardware-based stride prefetching has been studied by a

number of researchers [9, 14, 19]. The general idea is to use
a hardware table to remember for each load executed the
last address loaded Ai�1 and the di�erence, say S, between
Ai�1 and Ai�2 (the second-to-last address loaded). Later
on, when the same load is seen again with a new address
Ai, a prefetch for the address Ai + S will be launched if
Ai � Ai�1 equals S, provided that the load's information
has not been displaced from the table. The table entry for
that load is then updated with the new address and the
latest stride computed.
Comparing hardware-based vs. software-based stride prefetch-

ing (such as our scheme), the advantages of the hardware-
based approach are that it requires no re-compilation or
post-link optimizations, and it also poses no instruction over-
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(b) Floating-Point Benchmarks
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Figure 11: Overhead of stride pro�ling with naive and optimized instrumentation. The pro�ling time is
normalized to the time taken to run the original (i.e. not instrumented) program on the same input (i.e. the
training data sets).

head. On the other hand, the software-based approach has
the advantages of being more 
exible (e.g., in choosing the
prefetching distance), requiring no hardware table (whose
capacity limits the number of static loads that can be con-
sidered for prefetching), and most importantly being ap-
plicable to most existing machines which already support
prefetch instructions.
On the software side, two compiler-based stride prefetch-

ing schemes have been proposed. Stoutchinin et al. [36] used
the compiler to identify places in the program where strided
accesses are likely to occur. In particular, the compiler fo-
cuses on prefetching recurrent pointer updates. In contrast,
similar to our approach, Wu et al. [38] used stride pro�l-
ing to guide prefetching. An advantage of these approaches
is that the compiler could perform more detailed program
analysis than a post-link tool, thereby leading to lower pro-
�ling overhead and/or higher performance. However, the
major advantage of our approach is that it can be applied
in the absence of the source code.
At the post-link level, Barnes et al. [4] used cache simula-

tions to guide the insertion of stride prefetches into x86 bina-
ries. Comparing their work against ours, we do not use cache
simulations to select which loads need to be prefetched. In-
stead, we rely on the simple heuristics described in Sec-
tion 3.1. As a result, we achieve lower pro�ling overhead
than the cases where cache simulations are used. This re-
duced overhead is necessary for building a practical product.

6. CONCLUSIONS
We have extended the scope of automatic software-controlled

prefetching in this study. By using pro�ling to detect stat-
ically unknown strides, a larger range of programs can be

prefetched. And by inserting prefetches directly into ex-
ecutables, prefetching can be applied even without source
code. The performance bene�t of our technique is substan-
tial: It accelerates over one-third of the SPEC2000 bench-
marks by 3% to 56% on an Alpha 21264-based system. We
also demonstrate that pro�ling overhead can be largely re-
duced by instrumentation heuristics and sampling. Our
technique has been implemented as a product in the Com-
paq's Tru64 Unix.
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Figure 14: Performance impact of sampled stride pro�ling. Execution time is normalized to the baseline.
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