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Abstract

Ispike is a post�link optimizer developed for the
Intel r�Itanium Processor Family �IPF� processors�
The IPF architecture poses both opportunities and
challenges to post�link optimizations� IPF o�ers a
rich set of performance counters to collect detailed
pro�le information at a low cost� which is essential
to post�link optimization being practical� At the
same time� the predication and bundling features on
IPF make post�link code transformation more chal�
lenging than on other architectures� In Ispike� we
have implemented optimizations like code layout� in�
struction prefetching� data layout� and data prefetch�
ing that exploit the IPF advantages� and strategies
that cope with the IPF�speci�c challenges� Using
SPEC CINT�			 as benchmarks� we show that Ispike
improves performance by as much as 
	� on the
Itanium r�� processor� with average improvement of
���� and ��� over executables generated by the
Intel r�Electron compiler and by the Gcc compiler� re�
spectively� We also demonstrate that statistical pro�
�les collected via IPF performance counters and com�
plete pro�les collected via instrumentation produce
equal performance bene�t� but the pro�ling overhead
is signi�cantly lower for performance counters�

� Introduction

Post�link optimization �
� �� ��� �	� ��� is a technique
to improve the performance of a program after it is
compiled and linked� By directly operating on the ex�
ecutable� it has several advantages� First� it can see
the entire program and perform optimizations across
procedures that may be in di�erent source modules�
Second� it is relatively easy to use pro�le feedback
since the same executable is being pro�led and opti�
mized� In contrast� mapping pro�le information back
to the source code is more challenging due to the

compiler transformations that have been done in be�
tween the source code and the executable� Third� it is
applicable even when the program source is unavail�
able� which may be the case in some commercial or
legacy codes� These advantages make post�link time
optimization appealing� particularly in a production
environment�

This paper is about post�link optimization on the
Intel r�Itanium Processor Family �IPF� processors�
under the Linux r�operating system �abbreviated as
IPF�Linux�� The IPF architecture provides a number
of features that facilitate post�link optimization� In
particular� its �ne�grain performance monitoring can
identify performance bottlenecks at the instruction
level� and software can apply optimizations precisely
to remove these bottlenecks� Moreover� the rich set of
events that can be monitored on IPF enable detailed
performance analysis� However� IPF also poses chal�
lenges to post�link optimizations� Speci�cally� predi�
cationmakes post�link code transformation in general
and branch inversion in particular a challenging task
on IPF�

We have developed a post�link optimization tool
called Ispike for IPF�Linux� Besides standard opti�
mizations� it implements a number of key optimiza�
tions targeting memory latency� including code lay�
out� instruction prefetching� data layout� and data
prefetching� They are driven by the branch pro�les�
I�cache miss pro�les� and D�cache miss pro�les col�
lected via the IPF performance counters� We apply
these optimizations to IPF�Linux executables gen�
erated by the Intel r�Electron ��� and the Gcc com�
pilers� For SPEC CINT�			� these optimizations im�
prove performance from �� to 
	� on the Itanium r��
processor� with average improvement of ���� and
��� over Electron and Gcc� respectively� We also
demonstrate that statistical pro�les collected with
IPF performance counters provide the same perfor�
mance bene�t as complete pro�les collected with in�
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Name What it captures What are recorded

Branch Trace Bu�er �BTB� Last � to � branches Branch�s PC� branch target�s PC� mispredict status

Instruction Event Last I�cache miss Instruction PC� miss latency in cycles
Address Register �I�EAR� Last I�TLB miss Instruction PC� who serviced the miss	

L
 I�TLB� VHPT� or software

Data Event Last D�cache miss Instruction PC� data address� miss latency in cycles
Address Register �D�EAR� Last D�TLB miss Instruction PC� data address� who serived the miss	

L
 D�TLB� VHPT� or software

Table �� IPF hardware structures for instruction�level pro�ling� For I�EAR and D�EAR� we can monitor
either cache misses or TLB misses� but not both at the same time�

strumentation�

The rest of this paper is organized as follows� First�
we describe our pro�ling infrastructure in Section ��
Next� we discuss Ispike optimizations in Section ��
We then describe our solutions to a number of IPF
implementation issues in Section 
� We report our
experimental results in Section �� Finally� we relate
Ispike to other work in Section �� and conclude in
Section ��

� Pro�ling Infrastructure

In this section� we �rst introduce the IPF perfor�
mance monitoring unit� We then describe a Linux
tool called pfmon which we use to collect data from
the performance counters� Finally� we discuss the
pro�ling support inside Ispike itself�

��� IPF Performance Monitoring

A design philosophy of the IPF architecture is that
software plays a major role in optimizing program
performance� Many software optimizations require
information about the program�s run�time behavior�
To provide this information� IPF includes perfor�
mance monitoring hardware �� that supports two
complementary usage models� workload characteriza�
tion and instruction�level pro�ling� Workload charac�
terization is measuring the performance characteris�
tics of the workload under study� Two types of infor�
mation are of particular interest� how often an event
occurs� and how the cycles are spent �so called cy�
cle accounting�� For event counting� the Itanium r��
processor provides four 
��bit performance counters
and over �		 events that can be monitored with these
counters� For cycle accounting� IPF provides a way
to break down the total cycles into various categories
of stalls and �ushes� We will explain these categories
when we do the cycle breakdown for our results in
Section ������ As for instruction�level pro�ling� the
hardware attributes events like branches� cache and
TLB misses to individual instructions so that soft�

ware can know exactly where to optimize in the pro�
gram� IPF implements three hardware structures for
this purpose� Branch Trace Bu�er �BTB�� Instruc�
tion Event Address Register �I�EAR�� andData Event
Address Register �D�EAR�� they are described in Ta�
ble �� By performing statistical sampling on these
structures� precise instruction�level pro�ling can be
done at a low cost�

��� Perfmon and Pfmon

The IPF�Linux kernel provides an interface for con�
trolling the performance monitoring hardware� the
perfmon APIs ��
�� A tool called pfmon ��
� uti�
lizes the perfmon APIs to do event counting� cycle
accounting� and instruction�level pro�ling� We have
enhanced pfmon in several ways to make it more suit�
able for pro�le�guided optimization� First� we incor�
porate a sample�aggregation mechanism into pfmon�
This avoids dumping out raw samples in the middle
of the pro�ling session and hence reduces the pro�l�
ing overhead� Second� we extend the per�task mode
in pfmon to monitor all processes forked by the task�
instead of just the initial process� Third� we add a
module that detects strides in load�miss addresses us�
ing the D�EAR� More details of this are in Section ��
�

��� Ispike Pro�ling Support

Ispike accepts six types of pro�les� I�cache misses�
I�TLB misses� D�cache misses� D�TLB misses� load�
miss strides� and branches� Processing the �rst �ve
pro�le types is relatively simple as we mainly need to
attach the miss count to the corresponding instruc�
tion� Processing branch pro�les is more complicated�
Since we sample only taken branches �including di�
rect and indirect� branches and calls� in the branch
trace bu�er �BTB�� Ispike derives the counts of fall�
through edges based on Kircho��s laws �i�e� �ow in
equals �ow out at each basic block��
Besides processing pro�les� Ispike also provides nu�

merous tools for analyzing pro�les and their impact
on optimizations� Three of them are illustrated in
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�a� CFG viewer
�b� Code�layout viewer

�c� Load�latency comparator

PF RANKS             ADDRESSES          TOTAL LATENCIES %CHANGE

P 1    36  400000000524f3c0 4000000000006930  258390  101767  -61%

. 2     1  40000000054d8d20 4000000000005820  231550  229170 -1%

. 3     2  40000000050e0ac0 400000000003d3c0  191961  193046      +1%

P 4    52  4000000005e1c991 4000000000000950  186571   91211 -52%

. 5     3  4000000005537f10 40000000000022a0  179148  172017 -4%

P 6    34  40000000050d0ac1 4000000000021501  173962  105670 -39%

. 7     4  4000000005e1c990 4000000000000940  163366  161318 -1% 

P 8     5  4000000005674620 4000000000000c90  161451  154355 -4%

. 9     6  40000000050bec50 4000000000003f70  153348  152023 -1%

P   10     7  4000000005062c20 4000000000014520  152819  151749 -1%

Before After

Figure �� Three pro�le�analysis tools in Ispike�

Figure �� The CFG viewer is a graphical display of
the program�s control��ow graph �CFG� based on the
VCG tool ����� The snapshot shows the basic blocks
and edges annotated with execution counts� The tool
is useful for debugging optimizations and inspecting
code for new optimization opportunities� The code�
layout viewer visualizes the execution frequency of
instructions in an image at cache line granularity� fre�
quently executed lines have a darker color� It allows
for a quick visual validation of the e�ectiveness of
the code�layout optimization� The load�latency com�
parator compares the latency of loads before and af�
ter an image has been processed by Ispike� assuming
that load latency pro�les for both images are col�
lected� Since the position of a load in an image will
change because of optimizations� Ispike must track
loads while processing an image� Combined with
prefetching reports produced by Ispike� the compara�
tor becomes a powerful tool to evaluate the e�ective�
ness of data prefetching� The snapshot above shows
the top ten loads in the original image� A load that
Ispike attempted to prefetch is marked with the letter
�P�� By looking at the �change in the load latency�
we can tell whether a prefetching scheme is bene�cial
for a particular load�

� Ispike Optimizations

The main goal of Ispike optimizations is to cope with
memory latency� a major performance bottleneck on
modern machines� There are two general approaches�
The �rst is to reduce latency by improving local�
ity� The second approach is to tolerate latency by
prefetching� To improve locality� Ispike rearranges
the layout of both code and data based on pro�les�
It also prefetches both code and data� The details
of these optimizations are given in the rest of this
section�

��� Code Layout

Our pro�le�driven code�layout optimization is in�
spired by Pettis and Hansen�s algorithm ����� It has
three aims� �i� increasing I�cache performance by im�
proving locality� increasing cache line utilization� and
eliminating cache con�icts� �ii� reducing number of
control �ow changes� and �iii� reducing the number
of active code pages and thereby increasing the I�TLB
hit rate� This optimization is particularly important
for programs with large instruction footprints�

Our algorithm consists of three steps� which we
explain using the examples in Figure �� The �rst
step� basic�block chaining� tries to put basic blocks
in sequence if there is a frequently executed control
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�a� Basic�block chaining �b� Routine splitting �c� Routine placement

A

CB

D

FE

G

CFG
chain 1:

B

chain 2:

chain 3:

F

A C D E G

Before After

foo() foo_hot()

foo_cold()

AfterBefore

A()

B()

C()

D()

B()

D()

A()

C()

Figure �� Three steps of our code�layout algorithm�

�ow edge between them� For each routine� we sort
the edges in the routine�s �ow graph in descending
order of their execution counts� Some adjustments
are made to the execution counts before the sorting
to bias the algorithm when basic blocks have only a
single successor or predecessor� We then walk down
the sorted edge list in a greedy fashion chaining ba�
sic blocks together if they are the head and tail of
their respective chains and those chains are di�erent�
For the �ow graph shown in Figure ��a�� assuming
that the shaded path is hot� then three chains will be
formed� The second step� routine splitting� sorts the
resulting chains by the maximum edge count within
each chain� We compare this count against a thresh�
old to determine whether a chain is hot or cold� Hot
chains and cold chains are then placed in two sep�
arate regions� as shown in Figure ��b�� The third
step� routine placement� arranges the regions result�
ing from the previous step by their density� which
is de�ned as the average instruction execution fre�
quency of each routine� Putting hot routines close
together reduces their chance of con�icting with each
other in the I�cache and reduces the number of code
pages� This step is illustrated in Figure ��c��

The Ispike code generator will preserve the ba�
sic block sequences computed above� Unconditional
branches will be inserted as necessary and conditional
branches will be inverted if the taken branch target
happens to be the next basic block in the sequence�
While branch inversion is straightforward on archi�
tectures that can branch on predicate true or false� it
is non�trivial on IPF which can only branch on pred�
icate true� We will discuss our methods of inverting
branches on IPF in Section 
��� when we talk about
implementation issues� We have also experimented
with excluding branch edges from the chaining pro�
cess if the corresponding branches cannot be inverted�
This did not yield any performance gain and is there�
fore disabled by default�

��� Instruction Prefetching

Even with code layout� there are still some I�cache
misses that are not covered� They typically happen
at call and branch targets that are far away� To
cope with these misses� researchers have proposed
using instruction prefetching ��� ���� IPF provides
two software�controlled mechanisms for prefetching
instructions ��� namely streaming prefetching and
hint prefetching�

Streaming prefetching initiates hardware prefetch�
ing of sequential cache lines at the targets of dynam�
ically predicted taken branches� To invoke stream�
ing prefetching upon a particular branch� we use the
instruction br�many target� Sequential lines are
prefetched starting at target plus �
 or ��� bytes
�depending on the alignment of target�� Ispike
decides whether to use streaming prefetching for a
branch by estimating the size of the span starting at
the branch�s target� A span runs from the target to
the �rst statically predicted taken branch �including
unconditional branch�� Streaming prefetching is used
if the span�s size is at least ��� bytes� This makes sure
that we will prefetch only instructions that are going
to be used at the branch�s target�

Hint prefetching allows software to prefetch a par�
ticular instruction line� A hint prefetch is either a
brp�few target or brp�many target� A brp�few

prefetches one cache line at target� whereas a
brp�many prefetches two cache lines� Hint prefetch�
ing is intended to be used together with streaming
prefetching such that the �rst one or two lines of
a branch�s target are prefetched via a hint prefetch�
while the rest is via a streaming prefetch� In order to
fully hide the latency of an I�cache miss that hits in
the L�� the hint prefetch should precede the branch
by at least  fetch cycles� To �nd out which instruc�
tion lines need to be prefetched� we collect the I�miss
pro�le using the I�EAR� For each hot instruction line
T � we put brp�few T in the predecessor basic blocks
of T in the �ow graph of the whole program that
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Figure �� Frequency�based vs� temporal�based data layout� The execution count of each load is shown above
the top�left corner of the block that contains the load�

satisfy the following two criteria� �i� the predecessor
block P must be at least �� instructions � cycles �
�� assuming an IPC of �� ahead of T on an execu�
tion path between P and T � which may be in the
same or di�erent routines� and �ii� P must have at
least one nop �no operation� slot where we can place
the brp� This avoids any code size increase due to
the additional brps� We keep inserting brps for T at
the predecessors that satisfy both criteria until ��
of T �s miss latency would be covered� This coverage
estimation is based on path probabilities� which are
derived from the edge counts�

One practical issue in using an I�miss pro�le to
drive prefetching is that the code�layout optimiza�
tion will change the I�cache behavior� Therefore� if
we want to apply instruction prefetching after code
layout� we need to recollect the I�miss pro�le of the
program with code layout and then insert prefetches�
This requires pro�ling and applying Ispike twice�

��� Data Layout

Similar to code layout� Ispike also rearranges data
for better locality� However� reordering data is much
more challenging in terms of preserving program cor�
rectness� Thus� we limit our scope to reordering stat�
ically allocated data� which we call global� Our global
data reordering algorithm is based on the one recently
proposed by Haber et al� ���� The major di�erence is
that their execution pro�les are collected via instru�
mentation� while ours are collected via performance
counters� Following is a brief description of this al�
gorithm�

Global data is de�ned in the data sections of the
image� including global variables� constants� switch�
statement target addresses� or function addresses�
On IPF�Linux� global data references are typically
made through the special register gp� For each global
data symbol v� we aggregate the execution frequen�
cies of the instructions that access it� This aggre�
gated value� denoted by H�x�� represents the hotness
of x� Since data symbols are of di�erent sizes� we

normalize their hotness against their sizes� NH�x� �
H�x��sizeof�x�� In other words� NH�x� measures
the hotness per byte of x� Based on NH � we have
two algorithms to reorder global data� The �rst one
is to simply sort symbols in descending order of NH �
We call this a frequency�based algorithm� The second
one is a temporal�based algorithm� which packs to�
gether symbols that are accessed close to each other
in time during execution� Figure � illustrates the
di�erent data layouts resulting from these two algo�
rithms� The �gure shows a �ow graph corresponding
to two levels of if�then�else� which contain loads of
four global variables A to D� Assume the same size
for the four variables� The frequency�based algorithm
results in the data layout� A� C� B� D� In contrast�
the temporal�based algorithm results in the data lay�
out� A� B� C� D� The temporal layout is a better one
in this example because A and B are on a disjoint
path from C and D�

The temporal�based algorithm requires building a
data connectivity graph �DCG�� A node in the DCG
corresponds to a global data symbol� Two symbols�
say x and y� are connected by an �undirected� edge
in the DCG if a reference to y immediately follows a
reference to x on some path during program execu�
tion� and vice versa� The weight of the edge �x� y� is
the total frequency of the x�followed�by�y instances
and the y�followed�by�x instances� Once the DCG is
built� we lay the global data out by traversing the
DCG� starting with symbol that has the largest NH �
For each symbol x visited� we place x at the current
address in the global data area and increase this ad�
dress by sizeof�x�� Then we select the next symbol
to visit to be one of those that are connected to x
in the DCG� which have not been visited so far� To
ensure that symbols placed together are of compara�
ble hotness� we add a criteria that the new symbol
selected must have a NH �� NH�x� � Threshold�
where Threshold is a parameter between 	 and �� and
is chosen as 	�� in our experiments� If there are mul�
tiple symbols connected to x that satisfy this criteria�
we select the one that has the largest edge weight to
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�a� Two�phase sampling of the D�EAR

Time

Skipping phases (1 sample per 100 misses)

Inspection phases (1 sample per miss)

�b� Using GCD to discover strides
from miss addresses

Time
A1 A2 A3

A2-A1=5*48=240 A3-A2=7*48=336

GCD(A2-A1, A3-A2 )=GCD(240,336)=48
GCD(A3-A2, A4-A3 )=GCD(336,144)=48

A4

A4-A3=3*48=144

A1, A2, A3, A4 are four consecutive miss addresses of a load. 
The load has a stride of 48 bytes.

Figure 
� Stride pro�ling with the D�EAR�

visit next� However� if there is no such symbol� we
will pick the symbol that has the largest NH among
those that have not been visited� regardless of their
connectivity to x� We repeat this process until all
symbols in the DCG are visited�
In applying both frequency�based and temporal�

based data layout to various applications� we �nd
that the temporal�based algorithm consistently out�
performs the frequency�based one� Therefore� we will
present only the temporal�based results later in Sec�
tion ��

��� Data Prefetching

Ispike implements stride�based prefetching� targeting
address strides that are not statically detectable by
the compiler and thus need to be determined through
stride pro�ling� Wu ���� performs stride pro�ling
while the program is running and dynamically decides
whether prefetching should be performed for a partic�
ular load based on the pro�ling results� To minimize
the impact of stride pro�ling overhead on the overall
performance� his scheme tends to be conservative in
choosing which loads to pro�le and hence may miss
some prefetching opportunities� In contrast� Luk et
al� ���� perform stride pro�ling in a separate pro�ling
pass� This allows Luk et al� to pro�le more loads
than Wu� However� their pro�ling overhead is large
�a ��x slowdown on average for SPEC CINT�			�
because their pro�ling is based on instrumentation�

We have developed a stride pro�ling scheme ����
that can pro�le most of the loads that we would con�
sider for prefetching at a relatively low cost ��� pro�
�ling overhead on average for SPEC CINT�			�� We
use the D�EAR performance counter to capture load
events that miss in the D�cache� To achieve low pro�
�ling overhead� we sample the D�EAR in two phases
with di�erent sampling rates� as illustrated in Fig�
ure 
�a�� The skipping phase uses a lower sampling
rate� one sample per �		 misses� When enough sam�
ples have been collected� we switch to the inspection
phase which uses a much higher sampling rate� one

sample per miss� Stride detection is done in the
inspection phase as follows� Each D�EAR sample
provides three pieces of information about the miss�
� pc� daddr� lat �� where pc is the PC of the load
captured in the miss event� daddr is the data ad�
dress loaded� and lat is the miss latency in CPU cy�
cles� For each load� we look at four consecutive misses
and compute the deltas in the data addresses between
each consecutive pair ��i � daddri���daddri� where
i � ������ Standard stride detection checks whether
�� � �� � ��� However� since our data addresses
are miss addresses instead of reference addresses� we
are uncertain about the number of strides actually in�
cluded in each �i� Fortunately� we are certain that if
a stride S does exist� all these deltas should be some
multiple of S� Therefore� we can discover S by com�
puting the greatest common denominator �GCD� of
these deltas� If GCD������� � GCD�������� then
this GCD is the stride or a small multiple of it� Fig�
ure 
�b� illustrates this process�

Once the stride S of a load is found� Ispike inserts
an instruction lfetch R immediately after the load�
where lfetch is the data�prefetch instruction on IPF�
R is a register assigned a value equal to the load�s
current data address plus the product S � d� We dis�
cuss how we allocate this register speci�cally on IPF
in Section 
��� The parameter d is the prefetching
distance� which is either a user�speci�ed constant or
determined by some compiler heuristics ����� If there
are multiple strides detected for a load� we prefetch
the most frequent two of them�

��� Other Optimizations

In addition to the four memory�oriented optimiza�
tions mentioned above� Ispike also includes numer�
ous optimizations that improve performance by re�
ducing the number of instructions executed� These
include inlining� dead�code elimination� branch for�
warding� store�load forwarding� and GOT�access op�
timization� Among these optimizations� GOT�access
optimization has the biggest performance impact on
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�a� Before the optimization

addl r3=2648,gp;;/*r3 will get the address of the 
GOT entry */

ld8  r72=[r3];; /* r72 will get the address of the 
global variable */

ld4  r60=[r72] /* r64 will get the content of the 
variable */

�b� After the optimization

Deadaddl r3=2648,gp;

addl r72=4884,gp;; /* r72 will get the address of
the variable */

ld4  r60=[r72]

Figure �� GOT�access optimization�

our benchmarks� and thus we explain it in more de�
tail�

On IPF�Linux �and the run�time models for many
other architectures�� accesses to global variables of�
ten occur indirectly via theGlobal O�set Table�GOT�
and a special reserved register gp� the global pointer
which usually points somewhere into the middle of
the GOT� Figure ��a� gives a typical code idiom for
reading a global variable� There are two reasons for
the extra level of indirection� First� storing addresses
of global variables in the GOT allows them to be
resolved or even changed by the dynamic loader �a
process called symbol preemption�� Second� o�sets
encoded in the addl instructions are limited in size�
The GOT is compact as it only contains �
�bit ad�
dresses and hence the o�sets from the gp will be small
enough for addl�

The optimization performed by Ispike will replace
the code idiom with the one from Figure ��b�� Here
we assume that the address of the variable accessed
is equal to gp� 
��
� To preserve correctness Ispike
must ensure that the corresponding GOT entry can�
not be changed �or preempted� by the dynamic loader
and that the variable is close enough to the gp that
the o�set in the addl instruction will not over�ow�
The �rst condition is trivially satis�ed for static im�
ages� for shared images Ispike consults relocations
and symbols� The second condition is also easily ver�
i�ed by Ispike as the image is fully linked and all
addresses are known�

It is worth noting that Ispike is in a unique posi�
tion to perform this kind of optimization� The com�
piler alone cannot perform this transformation as it
cannot make guarantees about preemption and o�set
ranges� A smart linker together with some coopera�
tion from the compiler could probably substitute the
code idiom but would not be able to eliminate the
�rst �dead� instruction�

Applying the data�layout optimization from Sec�
tion ��� can facilitate this GOT�access optimization
since hot global variables can be grouped together in
a smaller range of addresses close to the gp� A similar
optimization opportunity was also observed by Haber
et al� ��� in their data�layout work�

� IPF Implementation Issues

In this section� we address four issues of implementing
Ispike optimizations on IPF� First� we discuss a fea�
ture called call shadow which a�ects adding�deleting
instructions in IPF binaries in general� Second� we
discuss how to invert branches when performing code
layout� Third� we discuss how to obtain free regis�
ters to compute data�prefetch addresses� Finally� we
discuss the code scheduling required for IPF�

��� Call Shadow

On IPF� instructions are grouped into bundles� each
of which typically contains three instructions� The
targets of all control transfers� including calls and re�
turns� are aligned at bundle boundaries� An instruc�
tion i is under a call shadow if it follows a predicated
call instruction in the same bundle b� If the call is not
taken� i will be executed� however if the call is taken�
control will be returned to the bundle immediately
following b after the call� and thus i will be skipped�
For instance� the instruction br elsewhere in Fig�
ure ��a� is under a call shadow� The presence of call
shadows poses a challenge to post�link time optimiza�
tion� if we add or delete instructions without special
care� the instructions under call shadows could be
pushed to the following bundles and so will be exe�
cuted even after returning from the predicated calls�
violating the original semantics� To solve this prob�
lem in existing binaries� we adopt the transformation
proposed by Ramasamy and Hundt ���� which uses
trampolines to eliminate call shadows before applying
any optimizations� Figure ��b� illustrates this trans�
formation� To avoid this problem in future binaries�
we have also worked with the Intel compiler team to
make the tool chain free of call shadows�

��� Branch Inversion

As part of code layout� branch inversion is needed
to convert the targets of frequently taken branches
to fall�throughs� On IPF� the direction of a branch
is determined by the value of its predicate register�
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�a� Call shadow �b� Solution

add r5,r5,4
(p3)br.call foo

bundle_1:

br elsewhere

bundle_2:

st [r8]=r7

foo(): ld r7=[r5]

br.ret

call if p3 is true
nop
br.call foo

trampoline: nop

nop
nop

br bundle_2

add r5,r5,4
(p3)br trampoline

bundle_1: nop

nop
bundle_new: nop

br elsewhere

bundle_2:

st [r8]=r7

foo(): ld r7=[r5]

br.ret

Figure �� Handling call shadows�

To invert a branch� we need the complement of its
predicate� Ispike �nds the instruction that de�nes
the branch�s predicate� which is typically a compare
instruction �cmp�� If the complement is already com�
puted by the compare and saved in another predicate
register pc� then we can use pc to invert the branch
provided that pc is not rede�ned between the com�
pare and the branch� Unfortunately� there are many
compare instructions that either do not compute the
complement or do not store it in another predicate
register� One such case is shown in Figure ��a�� where
the cmp instruction has predicate register p� as the
complement� which cannot be used for branch inver�
sion because p� is hardwired to �� In that case� Ispike
uses liveness analysis ���� to �nd a free predicate reg�
ister for holding the complement for branch inversion�
as shown in Figure ��b�� With this technique� the
number of dynamic inverted branches out of the total
number of dynamic branches that we want to invert
is dramatically improved from ��� to ���	� on av�
erage for the SPEC CINT�			 binaries compiled by
the Electron compiler� For the remaining cases where
we cannot �nd any free predicate register or the com�
pare instruction does not compute a complement�� al�
though we cannot invert the branch� we can still move
the branch�s target closer to the branch by adding a
new branch and switching the locations of the fall�
through block and the branch target� This approach
is shown in Figure ��c�� Even when Ispike cannot
invert a branch� we can still increase I�cache locality

�An additional problem is that comparisons with a NaT in�
put are not invertible �A NaT is a value that indicates a spec�
ulative operation has occurred with a deferred exception�� We
avoid this problem by an agreement with the compiler to not
generate conditional branches that are controlled by a compar�
ison with a NaT input� The following scheduling rules accom�
plish this	 �i� branches are kept in their original order� and �ii�
speculation check instructions are placed in their home block�
These rules ensure that the check for speculative exceptions oc�
curs before the branch and the comparison will be re�evaluated
with non�NaT inputs�

at the expense of an unconditional branch�

��� Finding Registers for Prefetch

Addresses

One major issue in implementing post�link stride
prefetching on IPF is the need for an extra register to
hold the prefetch address� This is not an issue for ar�
chitectures that have the base�plus�o�set addressing
mode in their prefetch instructions �e�g�� prefetch
���R��� because the prefetch address can be gener�
ated by adding a new o�set to the base register of the
load being prefetched� However� the prefetch instruc�
tion on IPF �lfetch� does not have an o�set �eld and
hence the whole prefetch address has to be explicitly
computed and stored in a register� Our problem is
how to get this register at the post�link level� where
register allocation has already been done�
We have three solutions to this problem� First�

we perform liveness analysis ���� to �nd free regis�
ters at the points where we want to prefetch� If
no free register is found� we attempt our second
method�allocating an additional register on the reg�
ister stack ��	� provided by the IPF hardware� Typ�
ically� a procedure allocates its own frame on the reg�
ister stack by executing an alloc instruction as one
of the �rst instructions in the procedure� Ispike allo�
cates additional registers for prefetching by increas�
ing the frame size of alloc� up to the maximum size
of the register stack frame �� registers�� If there is
no alloc or there are multiple alloc�s in the proce�
dure or the original frame size has already reached
the maximum� we cannot use this method and must
turn to our �nal method� On IPF� both load and
prefetch instructions have a base�update�immediate
form� where an given immediate value is added to the
base register after the memory access� Our last resort
is to increment the load�s base register by the prefetch
o�set� and then perform a prefetch with the same
base register but a decrement of the same prefetch

�



�a� Original �b� Branch inverted by �c� Branch not inverted� but
computing the complement locality still improved

cmp.eq p1,p0=r6,r7
…

(p1)br Label_B

Label_A:

Label_B:

1%

99%

cmp.eq p1,p2=r6,r7
…

(p2)br Label_A

Label_B:

Label_A:

99%

1%

cmp.eq p1,p0=r6,r7
…

(p1)br Label_B

Label_B:

Label_A:

99%
br Label_A

1%

Figure �� Branch inversion techniques�

o�set� Hence� the base register�s value is restored af�
ter the prefetch� This approach works as long as the
load�s base register is di�erent from the destination
register and the prefetch o�set can �t in the �bit im�
mediate �eld� If all three solutions fail� we do not
prefetch that particular load�

��� Code Scheduling

High�quality code scheduling is important for perfor�
mance on IPF� The scheduling rules are complicated
and often quite subtle ���� Also� the IPF instruction
set encodes three instructions per bundle� To avoid
the complexities of maintaining the original schedule
and bundling throughout all the phases of Ispike� we
reschedule all code� This makes the other optimiza�
tions simpler� and permits our intermediate represen�
tation to ignore bundling issues�

A compiler typically has more knowledge about the
memory aliasing issues than Ispike� and it can use
this knowledge when scheduling� The Ispike sched�
uler leverages the compiler�s knowledge by favoring
the original code order� The result is a scheduler
that both maintains the performance of the original
image and integrates the changes made by our opti�
mizer with little or no overhead�

� Experimental Results

We now report the performance impact of Ispike op�
timizations on the Itanium r�� processor� We �rst
describe our experimental setup� Then we discuss
the results of Ispike optimizations that are driven
by performance�counter pro�les� Finally� we compare
statistical pro�les collected via performance counters
against complete pro�les collected via instrumenta�
tion in terms of their pro�ling times and resulting
performance impact�

��� Framework

The test bed of our experiments was a HP Ever�
est server with four �GHz Itanium r�� processors and
��GB memory� Each processor has three levels of on�
chip caches� ��KB L�I���KB L�D� ���KB L�� and
�MB L�� Only one processor was used throughout
our experiments� Our system runs Red Hat Enter�
prise Linux AS with the ��
��� kernel� We used SPEC
CINT�			 as our benchmarks� The training data sets
were used to generate pro�les� while the reference
data sets were used for performance measurement�
Each benchmark was run to completion �ve times�
and the median execution time was reported� We ap�
plied Ispike optimizations to non�shared binaries gen�
erated by two di�erent compilers� the Intel r�Electron
compiler �Ecc� version ��	 Beta� and the GNU C com�
piler �Gcc� version ���� We used the O� optimization
level in both compilers� which produces aggressively
optimized baselines for our pro�le�guided optimiza�
tions�

��� Results driven by Performance�

counter Pro�les

We used our modi�ed pfmon to collect the
performance�counter pro�les needed to drive Ispike
optimizations� We ran each baseline once to simulta�
neously collect three types of pro�les� branch traces
�the BTB counter�� load misses� and strides �both
use the D�EAR�� Since the goal of the experiment
in this section is to maximize performance� we use
relatively high sampling rates� one BTB sample per
�	�			 branches� one D�EAR sample per �		 load
misses� and for stride pro�ling� one sample per �		
misses in the skipping phase and one sample per miss
in the inspection phase� The total pro�ling overhead
with these sampling rates is �� on average� Later
in Section ���� we will show that reducing these sam�
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�b� Gcc �O� baseline
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Figure �� Performance improvement of Ispike optimizations on SPEC CINT�			 binaries compiled by �a�
Ecc and �b� Gcc� AVG is the arithmetic mean�

pling rates by �	 times will lower the average pro�ling
overhead to only ��� at the expense of ���� less per�
formance gain�

Figure � shows the results of applying Ispike op�
timizations to the Ecc�generated and Gcc�generated
baselines� Code layout� streaming instruction
prefetching� data layout� data prefetching� and the
other optimizations discussed in Section ��� are all
applied at the same time� As we mention in Sec�
tion ���� hint instruction prefetching requires an ex�
tra pro�ling�optimizing pass� Nevertheless� we found
that hint prefetching does not bring additional ben�
e�t in these programs� Therefore� we do not include
it in Figure � to avoid the extra pass�

����	 Overall Performance

Execution time is reduced by as much as 
	�� with
an average improvement of ���� in the Ecc baseline
and of ��� in the Gcc baseline� Larger speedups are
observed in the Gcc baseline since it is less optimized
than the Ecc baseline� Nine out of �� benchmarks
�crafty� eon� gap� gcc� gzip� mcf� parser� perlbmk�
and vortex� are sped up in both baselines� The slow�
downs observed in the three benchmarks �combin�
ing both baselines� have di�erent reasons� for bzip�
and twolf� Ispike�s instruction scheduler generates
less optimized code than the compiler�s scheduler� for
vpr� the new data layout is somehow worse than the
original� Overall� Ispike optimizations achieve signif�
icant speedups in both baselines�

����� How were the Cycles Spent


To get insight into how our optimizations a�ect ex�
ecution time� we used the cycle�accounting mecha�
nism available on IPF to break down execution time
into various stall and �ush reasons� The breakdown
for the Ecc case �i�e� Figure ��a�� is shown in Fig�

ure  �the breakdown for the Gcc case is omitted
due to space limitation�� Each benchmark has two
bars� one for the baseline version and one for the op�
timized version� Each bar represents the execution
time normalized to the baseline case and is broken
down into six categories� Busy is the cycles where
the processor�s backend is not stalled� That is� the
processor retires at least one instruction in each of
these cycles� The remaining �ve categories are all
stall or �ush cycles� Front�end is the stall cycles due
to the lack of instructions delivered from the proces�
sor�s front�end� usually because of I�cache misses and
I�TLB misses� L�D�access is the stall cycles in ac�
cessing the D�cache due to various reasons such as a
store in con�ict with a returning �ll� However� this
does not include the stalled cycles experienced by the
consumers of loads� Instead� these cycles are sepa�
rately counted under Load�to�use� Br�mispredict are
the cycles where the pipeline is �ushed due to branch
mispredictions and interrupts� All remaining stall cy�
cles are lumped together as Other�

Figure  demonstrates that our various optimiza�
tions do help di�erent components of the execution
time� Our I�cache optimizations �code layout and
prefetching� reduce Front�end stalls in all benchmarks
except vpr� Our D�cache optimizations �data lay�
out and prefetching� reduce Load�to�use stalls in eight
benchmarks� most dramatically in mcf due to stride
prefetching� Our other optimizations� in particular
the GOT�access optimization� also reduce the Busy
component by executing fewer instructions�

����� Contributions of Individual Optimiza�
tions

Having seen the combined improvement of Ispike op�
timizations� we now investigate the contributions of
individual optimizations� Figure �	 shows the results
for the Ecc baseline �Gcc baseline results are again

�	
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Figure � Cycle breakdown into various stall and �ush reasons for the Ecc baseline and its optimized version�

omitted due to space limitation�� In Figure �	�a�� we
�rst apply code layout and then incrementally add
streaming prefetching and hint prefetching� Code lay�
out alone improves eon� gap� and vortex by over 
��
Streaming prefetching helps a little� most noticeably
in perlbmk� However� hint prefetching does not yield
additional bene�ts� Instruction prefetching does not
produce much gain in these benchmarks because only
a small amount of time is spent on front�end stalls�
especially after code layout� as evidenced in Figure �
Nevertheless� we do observe larger speedups with in�
struction prefetching in a commercial database appli�
cation which has a much bigger code footprint than
our benchmarks� In Figure �	�b�� the performance
of data layout and data prefetching is shown sepa�
rately� Except for vpr� the performance with data
layout is either improved or unchanged� It is be�
cause this optimization has no instruction overhead�
In contrast� data prefetching requires additional in�
structions for computing the prefetch addresses and
for the prefetches themselves� As a result� while we
enjoy substantial speedups in gap� mcf� and parser

with data prefetching� we also su�er slowdowns in a
few benchmarks� Finally� we show the improvements
due to other optimizations alone in Figure �	�c��
Among all other optimizations� the GOT�access op�
timization is the one that provides the biggest im�
provement� The gains in crafty and vortex largely
come from this optimization� For these two bench�
marks� we also note that the combined performance
improvement is bigger than the sum of the improve�
ments from individual optimizations� This is because
the data�layout optimization creates more opportu�
nities for the GOT�access optimization�

��� Pro�ling Overhead vs� Perfor�

mance Impact

One practical consideration of pro�le�guided opti�
mizations is the cost and accuracy tradeo� in pro�le
collection� In general� more accurate pro�les come at
the cost of longer pro�ling time� In this section� we
vary the pro�ling overhead to two extremes and mea�
sure their resulting performance� At one extreme� we
use low sampling rates in pfmon� At the other ex�
treme� instead of using performance�counter pro�les�
we use a dynamic instrumentation tool on IPF called
Pin ��� to collect pro�les that are functionally equiv�
alent to pfmon pro�les� Complete instrumentation�
based pro�les are the most accurate though the cost
of collecting them is typically much higher�
Figure �� shows the overhead and performance im�

provement of several pro�ling schemes� Figure ���a�
includes the run�time overhead of three statistical
pro�ling schemes based on performance counters�
with di�erent sampling rates� The notation used is�
BTB���b means one BTB sample per b branches�
D�EAR���d means one D�EAR sample per d load
misses� Stride����s���i�means one D�EAR sample
per s load misses in the skipping phase and one sam�
ple per i misses in the inspection phase� The �rst
bar is the default sampling rates that we have been
using so far� When we reduce the BTB sampling
rate by �	 times in the second bar� the average pro�
�ling overhead is down to �
�� And when we also re�
duce both the D�EAR and stride sampling rates by �	
times in the third bar� the pro�ling overhead becomes
only �� on average� Figure ���b� is the overhead of
complete instrumentation�based pro�ling� We sepa�
rately collect three types of pro�les� edge pro�les�
load�latency pro�les� and stride pro�les� So� the to�
tal overhead of collecting all three pro�le types is at
least as much as the maximum of collecting any of
them� Finally� Figure ���c� shows the performance
improvements achieved with these various pro�ling

��
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�b� D�cache optimizations �c� Other optimizations
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Figure �	� Performance impact of individual Ispike optimizations on the Ecc baseline�

schemes�

The pro�ling overhead with performance counters
is two orders of magnitude less than that with Pin�s
dynamic instrumentation� Nevertheless� it should be
noted that the current focus of Pin is on providing
general instrumentation� little e�ort has been spent
on minimizing pro�ling overhead� Thus� instrumen�
tation pro�ling overhead will be reduced in the fu�
ture� The really good news we learn from Figure ��
is that we do not need to sacri�ce much performance
for fast pro�ling� As Figure ���c� shows� using instru�
mentation pro�les to optimize does not provide addi�
tional performance over our default scheme that uses
performance�counter pro�les� In fact� performance�
counter pro�les result in a noticeably higher perfor�
mance than instrumentation pro�les in mcf� The
reason is that stride pro�ling via D�EAR captures
strides between misses� while stride pro�ling via in�
strumentation captures strides between references� It
turns out that miss strides are better candidates for
prefetching than reference strides� When we lower
the BTB sampling rate from our default to the third
bar in Figure ���c�� we su�er a 	��� performance
drop while the pro�ling overhead is signi�cantly re�
duced from �� to �
�� And when we also lower
the D�EAR sampling rate by �	 times to the fourth
bar where the pro�ling overhead is only ��� although
we observe substantial performance drops in gap and
parser �because a number of strides become un�

detected�� the average performance improvement is
still within ���� of that with instrumentation pro�
�les� Overall� performance�counter pro�les produce
as good speedups as instrumentation pro�les� but in�
cur substantially less overhead�

� Related Work

A number of static post�link optimizers have
been developed for di�erent architectures� including
FDPR for the IBM r�Power r� ���� Etch ��	� for the
Intel r�Pentium r�� and Alto ���� and Spike �
� both for
the Compaq Alpha� To the best of our knowledge�
Ispike is the �rst post�link optimizer developed for
the Itanium architecture� and thus we need to cope
with a new set of challenges in implementing post�link
optimizations that are unique to this architecture�

Most studies on pro�le�guided optimizations are
based on instrumentation pro�les� Optimizers that
use hardware�counter pro�les include Morph ��
� and
Spike �
�� To collect pro�les� Morph implements its
own Morph Monitor� while Spike uses DCPI ���� Both
the MorphMonitor and DCPI were specially designed
for continuous pro�ling� and thus their pro�ling over�
head is remarkably low �less than 	��� for Morph
and ���� for DCPI�� In contrast� pfmon is a gen�
eral pro�ling tool and is not designed for continuous
pro�ling� Yet� we show that our pro�ling overhead

��



�a� Performance�counter pro�ling overhead �b� Instrumentation pro�ling overhead
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Default: BTB=1/10K, D-EAR=1/100, Stride=<1/100, 1/1> 
BTB=1/100K, D-EAR=1/100, Stride=<1/100, 1/1> 
BTB=1/100K, D-EAR=1/1000, Stride=<1/1000, 1/1> 
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�c� Performance improvement
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Optimized with instrumentation profile
Optimized with perfmonance-counter profile (default: BTB=1/10K, D-EAR=1/100, Stride=<1/100, 1/1>)
Optimized with perfmonance-counter profile (BTB=1/100K, D-EAR=1/100, Stride=<1/100, 1/1>)
Optimized with perfmonance-counter profile (BTB=1/100K, D-EAR=1/1000, Stride=<1/1000, 1/1>)

Figure ��� Overhead and performance improvement of various pro�ling schemes�

can be as low as ��� In addition� we quantitatively
compare instrumentation pro�les and performance�
counter pro�les� and demonstrate that one can have
both low pro�ling overhead and good speedups with
performance counters�
The various Ispike optimizations �code layout and

prefetching� data layout and prefetching� GOT�access
optimization� have been separately investigated in
the past� References to these studies can be found
in Section �� Ispike is a single tool that integrates
all these optimizations� thereby maximizing overall
performance�

� Conclusions

In developing Ispike� the �rst post�link optimizer for
the Intel r�Itanium r�� we have faced new opportunities
and challenges� We have addressed Itanium�speci�c
implementation issues including call shadows� branch
inversion� getting free registers� and code scheduling�
We have exploited the �ne�grain performance moni�
toring on Itanium r�to drive important optimizations
including code layout� instruction prefetching� data
layout� and data prefetching� We show that these
optimizations contribute signi�cant performance im�

provement to SPEC CINT�			� an average of ����
over the Intel r�Electron compiler and ��� over the
GNU Gcc compiler on the Itanium r�� processor� We
also demonstrate that these speedups obtained with
performance�counter pro�les are essentially the same
as those obtained with instrumentation pro�les� and
that the pro�ling overhead can be as low as �� while
the speedups are still substantial� Finally� we be�
lieve that the techniques we developed are not lim�
ited to static optimization� but are also applicable to
dynamic optimization�
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