
On The Complexity of Function Pointer

May-Alias Analysis

�

Robert Muth Saumya Debray

Department of Computer Science

University of Arizona

Tucson, AZ 85721, USA

fmuth, debrayg@cs.arizona.edu

October 25, 1996

Abstract

This paper considers the complexity of interprocedural function pointer

may-alias analysis, i.e., determining the set of functions that a function

pointer (in a language such as C) can point to at a point in a program.

This information is necessary, for example, in order to construct the con-

trol ow graphs of programs that use function pointers, which in turn

is fundamental for most dataow analyses and optimizations. We show

that the general problem is complete for deterministic exponential time.

We then consider two natural simpli�cations to the basic (precise) anal-

ysis and examine their complexity. The approach described can be used

to readily obtain similar complexity results for related analyses such as

reachability and recursiveness.

1 Introduction

Recent years have seen a great deal of interest in interprocedural compile-time

analyses and optimizations (see, for example, [CBC93, LR92, LRZ93, Mye81,

SP81, WL95]). Fundamental to any such e�ort is the determination of interpro-

cedural control ow. In the presence of function pointers (or procedure-valued

variables) this requires the determination of the set of functions that a function

pointer may point to at any program point, i.e., the set of its possible aliases. In

this paper, we examine the theoretical complexity of this problem, which we refer

to as the interprocedural function pointer may-alias analysis (FP-MayAlias).

The problem of determining interprocedural control ow in the presence

of procedure-valued arguments was �rst investigated in the context of call

(multi)graph construction for Fortran programs, which do not allow functions to

return procedure values [Ryd79, CCHK90]. More recently, Shivers uses abstract

�

This work was supported in part by the National Science Foundation under grant number

CCR-9502826.

1

interpretation to examine the problem in the context of higher-order languages

such as Scheme [Shi88, Shi91]: His major concerns are with semantic aspects of

the problem. Lakhotia studies the general problem for a language where pro-

cedures may be assigned to variables, invoked through variables, and returned

as results [Lak93]. Lakhotia gives a polynomial time algorithm whose e�ciency

gains come at the cost of considerable imprecision in the analysis.

Zhang and Ryder [ZR94] examine the complexity of interprocedural function

pointer may-alias analysis for the programming language C. They are the �rst

to de�ne, in a precise way, what it means for such an analysis to be precise,

1

and

consider the complexity of the problem with respect to the presence or absence

of various program constructs, such as global function pointers, assignment to

function pointers, invocation through function pointers, etc. They show that

while polynomial-time algorithms exist for precise solutions to the problem in

the presence of some restricted combinations of such program constructs, the

problem is, in most cases, NP-hard.

This paper examines in detail the computational complexity of a number of

variations on interprocedural function pointer may-alias analysis. We �rst show

that the computation of precise solutions requires the use of the relational at-

tributes method [JM81], which, in turn, implies NP-hardness even in the absence

of function calls, and show that the problem is complete for deterministic expo-

nential time. We then examine two natural ways to simplify the analysis at the

cost of precision. The �rst is to use an independent attributes analysis [JM81],

i.e., ignore dependences between the aliases of di�erent variables. Somewhat

surprisingly, the problem remains EXPTIME-complete in this case: the simpli-

�cation produces no improvement in the theoretical worst-case complexity. The

second simpli�cation is to abandon context information for function calls and

resort to what Shivers refers to as 0-CFA (zeroth-order control ow analysis).

It turns out that this simpli�cation admits polynomial-time algorithms, though

potentially at the cost of considerable sacri�ce in precision.

The remainder of this paper is organized as follows. Section 2 discusses

background information and de�nes the FP-MayAlias problem. Section 3 dis-

cusses the problem of obtaining precise solutions to this problem. Section 4

considers the complexity of function pointer alias analysis using the indepen-

dent attribute method, and Section 5 considers a further sacri�ce in precision

involving context-insensitive analysis. Section 6 briey considers the related

problem of function pointer must-alias analysis. Finally, Section 7 concludes.

2 Preliminaries

For code analysis and optimization purposes, compilers typically construct a

control ow graph for each function in a program [ASU86]. This is a directed

graph where each node represents a segment of executable code that has a single

1

The determination of whether some (nontrivial) propertywill actually hold at a particular

program point at runtime is, of course, undecidable. A standard assumption in the dataow

analysis literature is that both branches of a conditional can be executed: this usually su�ces

to sidestep the problem of undecidability, and \precision" of program analyses is typically

de�ned with respect to this assumption.

2

entry point and a single exit point, and where there is an edge from a node A to a

node B if and only if it is possible for execution to leave node A and immediately

enter node B. If there is an edge from a node A to a node B, then A is said to

be a predecessor of B and B is a successor of A; the set of all predecessors of a

node A is denoted by pred(A), while the set of all successors of A are denoted

by succ(A). For a node with a single predecessor, we abuse notation and use

pred(A) to refer to the predecessor itself rather than the singleton set containing

the predecessor, and similarly with successors.

Control ow graphs in the traditional sense describe the ow of control within

a function, but do not account for control ow across function boundaries. An

interprocedural control ow graph (ICFG) for a program consists of the control

ow graphs of all the functions in the program, together with edges representing

calls and returns that link the ow graphs of di�erent functions. A function

call is represented using a pair of nodes, a call node and a return node: the

successors of a call node consist of the corresponding return node together with

the entry node of each function that can be called from that node (in the case

of indirect calls through function pointers, there is an edge to the entry node of

each function in the program), while the predecessors of a return node consist

of the corresponding call node together with the exit node of each function that

could have been called from that call node. The function that is called from

a call node n is denoted by callee(n). To prove that a property holds at a

program point, an analysis must consider statically executable paths from the

entry point of the program upto that point: roughly speaking, these are paths

that can actually be taken during execution, modulo the assumption (standard

in dataow analysis) that both branches of a conditional can be taken [ZR94].

More formally, these paths can be de�ned as follows:

De�nition 2.1 [Statically executable path] A path starting at the root

2

of

the interprocedural control ow graph is statically executable if it satis�es the

following two conditions:

1. The path has a proper subpath containing all the return nodes. A path is

proper if

� It contains no return and no call nodes.

� It is the concatenation of two proper paths.

� Its �rst call node c and its last return node r stem from the same

call site; the successor c

0

of c and the predecessor r

0

of r belong to

the same function; and the path from c

0

to r

0

is also proper.

2. For each indirect call edge through a function pointer x to a function f ,

x must point to f , i.e., the last assignment to x along the path must have

been to f .

2

In the sequel we will call this root entry(main)

3

De�nition 2.2 [Function Pointer May Aliasing Problem] Given a node n in

the ICFG and a variable v the function pointer may aliasing problem is to �nd

all procedures p so that there is a statically executable path from the entry

point of the program to the node n at the end of which v points to p.

We write [n; hv; pi] to indicate that v may be aliased to p, i.e., may point

to p, at a program point n. An interprocedural function pointer may-alias

analysis is said to be precise if, for each program point n of each program P ,

the set of aliases it computes is exactly the set [n; hv; pi] . While an analy-

sis may not be precise in general, it is required to be safe, i.e., compute at

least those aliases that hold at each program point. We will show that the

problem of precise function pointer may-alias analysis is complete for the com-

plexity class EXPTIME, i.e., deterministic exponential time, which is de�ned

as EXPTIME =

S

c�0

DTIME[2

n

c

].

We use the following notation in the remainder of the paper. The powerset

of a set S is denoted by P(S) , the n-fold Cartesian product of S with itself is

denoted by S

n

, the set of monotone functions from S

n

to S|assuming that S

is ordered|is denoted by [S

n

! S]. If S forms a (complete) lattice under a

partial order v, with meet and join operations u and t, then S

n

and [S

n

! S]

also form (complete) lattices with v, u and t extended componentwise and

pointwise in the obvious way. Given a recursive equation f(�x) = E(f; �x) over

a complete lattice (S;v) with meet and join operations u and t respectively,

let � (f) : S ! S be the functional corresponding to the right hand side of this

equation: if � is monotone and continuous (note that a monotone function over

a �nite(-height) lattice is necessarily continuous), then from the Knaster-Tarski

�xpoint theorem [Tar55], it has a least �xpoint given by

F

i�0

f�

i

(?) j i � 0g,

where ? is the least element of S and �

i

denotes the i-times iterated unfolding

of � . We use lfp(f) and sometimes f

�

to denote this least �xpoint. Finally,

f [a 7! b] denotes the function that coincides with f except at a, where it

evaluates to b: f [a 7! b]

4

= �x:if x = a then b else f(x):

Since we focus purely on the problem of function pointer aliasing, to sim-

plify the discussion we explicitly disregard issues that do not bear directly on

this. In particular, we assume that there are no arrays or records, nor any refer-

ence parameters or pointer-induced aliasing (except for aliases due to function

pointers).

For notational simplicity in the discussion that follows, we assume that pro-

grams obey the following syntactic restrictions. We assume that all functions

have the same set of local variable names, denoted by Var, and the same set of

formal parameters Fml = ffml

1

; : : : ; fml

k

g � Var. These formals are assumed

to be read-only, i.e., they cannot be changed within a function. This makes it

easier to match up environments at the entry to, and exit from, a function, and

can be easily met by copying formals to other local variables where necessary.

Additionally, each function is assumed to have a special variable ret 2 Var: the

value returned by the function is loaded into this variable before control returns

to its caller. To model parameter passing, we assume that each function has a

special set of variables Arg = farg

1

; : : : ; arg

k

g � Var, and that the value of the

4

i

th

argument is assigned to arg

i

before a function call (1 � i � k). Addition-

ally, each function is assumed to have a special variable res 2 Var: whenever

a function calls another function, the result of the function call is assumed to

be assigned to this variable when control returns to the caller. Finally, it is as-

sumed that the ow graph for each function f has distinguished entry and exit

nodes, entry(f) and exit(f) respectively, where execution enters f and leaves f .

We sidestep the issue of indirect calls through an unde�ned function pointer

variable by assuming that there is a special function nil 2 Fun, where Fun

denotes the set of function names in a program, that always returns a pointer

to itself. Initially, all variables are assumed to be initialized to point to nil. The

entry point of a program is a distinguished function main 2 Fun. We assume

that there are no global variables. This restriction is primarily to simplify our

dataow equations: it is straightforward to extend the equations to take globals

into account, but this does not shed any additional insight into complexity issues

relating to this analysis or a�ect our results in any way.

3 Precise Function Pointer Alias Analysis

3.1 Relational Attributes vs. Independent Attributes

Program analysis involves keeping track of (descriptions of) the values di�er-

ent variables can take on at di�erent program points. In general, the values of

di�erent variables may depend on each other. When tracking the values that

variables can take on, we may choose to keep track of such dependencies (leading

to analysis information of the form \[n; hx; ai] and [n; hy; bi] ; or [n; hx; ci] and

[n; hy; di] "), or we may choose to ignore such dependencies (leading to informa-

tion of the form \[n; hx; ai] or [n; hx; ci] ; and [n; hy; bi] or [n; hy; di] "). Jones

and Muchnick refer to the former kind of analysis as the relational attributes

method, and the latter kind as the independent attributes method [JM81]. In

practice, program analyses typically use the independent attributes method be-

cause it tends to be simpler and more e�cient to implement.

In the context of function pointer may-alias analysis, a precise analysis al-

gorithm cannot use the independent attributes method in general. This is illus-

trated by the following example:

Example 3.1 Let PF denote the type of a pointer to a function that takes an

argument of type PF and returns a result of type PF.

3

Consider the following

program:

PF id(PF x) { return x; }

PF nil(PF x) { return &nil; }

main()

{

PF z;

3

This recursive type cannot be properly expressed in C, though it is possible to use void

pointers and casting to achieve the same results. To simplify the presentation, however, we

will use PF to refer to such pointers.

5

if (...) { x = &id; y = &nil; }

else { x = &nil; y = &id; }

z = (*x)(y);

...

}

It is not di�cult to determine that, regardless of which branch of the condi-

tional is taken, the value assigned to z must be a pointer to nil. However, an

independent attribute analysis would determine the set of possible aliases for

both x and y, at the point immediately after the conditional, to be fid, nilg.

Then, when considering the indirect call (*x)(y)we would be forced to consider

the possibility that both x and y are pointers to id, implying that a possible

value that could be assigned to z is a pointer to id. This is imprecise, and the

imprecision is due solely to the fact that the connection between the aliases of

di�erent variables is lost during an independent attributes analysis.

3.2 A Framework for Function Pointer May-Alias Analysis

As Example 3.1 illustrates, a precise analysis requires what Jones and Muchnick

have referred to as a relational attributes analysis, i.e., where connections be-

tween the possible aliases of di�erent variables are maintained [JM81]. We will

keep track of such connections using environments, which map local variables

to the functions they are aliased to (point to). Environments are �nite maps;

an environment of the form [a

1

7! b

1

; : : : ; a

n

7! b

n

] represents the function

�x:if x = a

1

then b

1

; � � �; else if x = a

n

then b

n

; else nil

The set of environments is Env = Var ! Fun. The function Lookup : (Var [

Fun) � Env ! Fun evaluates the expressions in call and assignment nodes. An

expression can either be a variable or a constant:

Lookup(expr; env) =

�

expr if expr 2 Fun

env(expr) if expr 2 Var

The dataow analysis associates, with each node n in the ICFG, an element

AEnv(n) 2 P(Env) . Since all variables are unde�ned, and hence assumed to be

initialized to nil at the entry to the program (see Section 2), for the root node

r (= entry(main)) of the ICFG we set AEnv(r) = f�x:nilg. The environments

for the other nodes are de�ned via dataow equations as follows:

1. n is the entry node for a function f . Let CallEnv(n; f) be a the subset of

environments currently associated with call node n that could have caused

execution to enter function f :

CallEnv (n; f) = fe 2 AEnv(n) j f = Lookup(callee(n); e)g:

Then, AEnv(n) is given by

AEnv(n) =

S

p2pred(n)

f[fml

1

7! e(arg

1

); : : : ; fml

k

7! e(arg

k

)] j

e 2 CallEnv(p; f)g:

6

2. n is an assignment node `x := u'. The only e�ect of this is to update the

binding of x in the environment to the value(s) denoted by u:

AEnv(n) =

[

p2pred(n)

fe[x 7! Lookup(u; e)] j e 2 AEnv(p)g:

3. n is a return node for a function call. Let n

0

be the call node corresponding

to n. The possible return values can be obtained from the environments

at the exit nodes of the functions called by n

0

. However, we have to

make sure that we consider only realizable paths: this can be done by

considering only those environments at the exit nodes whose formals match

the arguments at the call node n

0

. Therefore, we de�ne:

ReturnEnv (n; e) = fe

0

2 AEnv(exit(f)) j f = Lookup(callee(n); e)^

^

1�i�k

e(arg

i

) = e

0

(fml

i

)g:

AEnv(n) is then simply the set of environments at the call node n

0

ap-

propriately updated with the values that could be returned by the called

function:

AEnv(n) = fe[res 7! e

0

(ret)] j e 2 AEnv(n

0

) ^ e

0

2 ReturnEnv (n

0

; e)g

4. n is a conditional node, an exit node, or a call node. In each case, AEnv(n)

is obtained by copying the environments of the only predecessor node:

AEnv(n) = AEnv(pred(n)):

5. n is a junction node. In this case, AEnv(n) is obtained as the union of its

predecessors' envoronments:

AEnv(n) =

S

p2pred(n)

AEnv(p):

The equation for the entry nodes make sure that not all possible function argu-

ments are considered but only those that can actually happen during execution.

This essentially resembles the minimal function graphs approach of [JM86].

We use AEnv

�

to denote the least �xpoint of the system of equations given

above for AEnv . Since the sets Var and Fun are �nite, so is the set Env =

Var ! Fun. This implies that (P(Env) ;�) is a �nite lattice, and therefore that

AEnv

�

2 P(Env) can be computed using the iterative algorithm shown below.

Algorithm 3.1

for all nodes n do

if n = r then AEnv(n) = f�x:nilg else AEnv(n) = ;

repeat

for all nodes n except r do in parallel

recompute AEnv(n) from the AEnv value(s) of the predecessor(s) of n

until there is no change to AEnv(n) for any node n

7

The �xpoint captures the aliasing behavior of the program precisely (upto

the standard assumptions of dataow analysis):

Lemma 3.1 The precise set of aliases at any program point n in a program is

given by AEnv

�

(n). In other words, for any point n in a program, [n; hv; pi] if

and only if 9e 2 AEnv

�

(n) : e(v) = p.

Proof The proof that [n; hv; pi] implies 9e 2 AEnv

�

(n) : e(v) = p is by

induction on the length of statically executable paths leading upto n. The

other direction is by �xpoint induction on the equations de�ning AEnv.

Theorem 3.1 FP-MayAlias 2 EXPTIME:

Proof We show that AEnv

�

can be computed in time O(n

3

� (f

v

)

2

) = O(n

3

�

2

2n logn

), where n is the number of nodes in the ICFG,f = jFunj, and v = jVarj.

We assume that each set AEnv(n) is represented by a bitvector of length f

v

.

Since each bit once set to 1 will never change back to 0 there can be at most

n � f

v

iterations. In each iteration we have to consider n nodes. The most

costly operation is the computation for a junction node which is bounded above

by O(n � f

v

). Furthermore, we have f = O(n), and v = O(n). Since the

complexity class EXPTIME is de�ned as EXPTIME = [

c�0

DTIME[2

n

c

], the

theorem follows.

3.3 FP-MayAlias is EXPTIME-Hard

Theorem 3.1 indicates that in the worst case, time that is exponential in the size

of the input program is su�cient for the FP-MayAlias problem. In this section,

we show that this analysis problem is hard for deterministic exponential time,

i.e., it may require, in the worst case, time that is (at least) exponential in the

input size. Our proof is by reduction from a problem of evaluating recursive

monotone Boolean functions over the lattice B = f0;1g, the boolean lattice

with 0 v 1, and meet and join operations u and t.

De�nition 3.1 [Recursive monotone boolean function (RMBF)]

A recursive monotone boolean function (RMBF) is an equation

F (x

1

; : : : ; x

k

) = expr

where expr is recursively de�ned by the following BNF productions:

expr ::= 0 j 1 j x

i

(1 � i � k) j expr ^ expr j expr _ expr j F (expr; : : : ; expr)

expr induces a monotone and continous functional �

1

on [B

k

! B].

4

The

function denoted by the equation is then its least �xpoint lfp(F) in [B

k

! B].

4

Here 0,1, resp. x

i

are abbreviations for �~x:0, �~x:1, resp. �~x:x

i

8

De�nition 3.2 [RMBF Problem]

Given a pair (eq; ~z) where eq is a RMBF and ~z 2 B

k

the RMBF problem is to

evaluate (lfp(F))(~z).

Theorem 3.2 (Hudak and Young [HY86])

The RMBF problem is EXPTIME-complete in the length of the pair (eq; ~z).

Given an instance ' = (eq; ~z) of the RMBF problem, our strategy will be to

generate a program P

'

such that the results of function pointer alias analysis

on P

'

can be used to solve '. (The generation of the corresponding ICFG is

straightforward). Given any numbering of the syntax tree of eq that assigns

distinct numbers to distinct nodes, let the subtree of the syntax tree rooted at

the node numbered ` be denoted by E

`

and let `

r

be the number of the root

node. Then, the program P

'

is de�ned as follows:

1. It contains the de�nitions

typedef PF ...;

PF nil(PF arg) freturn &nil;g

PF id(PF arg) freturn arg;g

Here, PF is a pointer to a function that returns a result of type PF and

takes an argument of type PF (see Example 3.1).

2. Corresponding to each subexpression E

`

of the body of the recursive equa-

tion eq, there is a C function f

`

, de�ned as follows:

(a) If E

`

� 1 then f

`

is: PF f

`

(PF x1,...,PF xk) freturn &id;g

(b) If E

`

� 0 then f

`

is: PF f

`

(PF x1,...,PF xk) freturn &nil;g

(c) If E

`

� x

i

then f

`

is: PF f

`

(PF x1,...,PF xk) freturn xi;g

(d) If E

`

� E

`

1

^E

`

2

then f

`

is:

PF f

`

(PF x1,...,PF xk)

freturn f

`

1

(x1,...,xk)(f

`

2

(x1,...,xk));g

(e) If E

`

� E

`

1

_E

`

2

then f

`

is:

PF f

`

(PF x1,...,PF xk)

freturn (...)? f

`

1

(x1,...,xk): f

`

2

(x1,...,xk);g

(f) If E

`

� F (E

`

1

; :::; E

`

k

) then f

`

is:

PF f

`

(PF x1,...,PF xk)

freturn f

`

r

(f

`

1

(x1,...,xk),...,f

`

k

(x1,...,xk));g

3. Let

~

z

0

be obtained from ~z by mapping1 to id and 0 to nil componentwise.

Then, the entry point for P

'

is de�ned by the C function

void main() f PF result = f

`

r

(&z

0

1

,...,&z

0

n

); g

9

Example 3.2 Consider the RMBF instance

' = (F (x

1

; x

2

; x

3

) = F (F (x

1

; x

3

; x

2

); x

3

_ x

2

;1) ^ x

1

; (1;0;1))

Its syntax tree, with the (preorder) number of each node shown next to the

node, together with the program P

'

corresponding to ', is shown in Figure 1.

The following result is straightforward:

Lemma 3.2 Given any instance ' of RMBF , the ICFG for program P

'

can

be generated in time polynomial in j'j.

Since aliases in the programs so generated are generated through function

calls only, variables can point only to nil and/or id, and the aliases of a par-

ticular incarnation of a variable never changes, we can use a somewhat simpler

approach for the analysis than that outlined in Section 3.2. The following the-

orem establishes the relationship between the alias analysis and the solution of

the RMBF problem. The rest of the section is devoted to its proof.

Theorem 3.3 (Main Theorem)

Let ' = (eq; ~z) be an RMBF problem and P

'

the corresponding program gen-

erated by our reduction. Then,

(lfp(F))(~z) = 1 if and only if [exit(main); hresult; idi] holds in P

'

In order to prove Theorem 3.3, it su�ces to focus on the possible return

values of functions. This motivates the de�nition of the mapping AFunc : Fun !

P(Fun)

k

! P(Fun) that models the aliasing behavior of an entire function.

AFunc(f) maps argument aliases of f into return aliases of f . AFunc(f) is

de�ned by a system of recursive equations, one equation for each function f

`

corresponding to the subexpression E

`

, as given in Table 1, with the binary

operation ? is de�ned as follows:

a ? b

4

= if (a = ; _ b = ;) then ;

elseif (a = fnilg _ b = fnilg) then fnilg

else a [b.

Let L be the lattice (P(fnil; idg) ;�). All the functions occuring in the system

of equations de�ning AFunc are in [L

k

! L], i.e., are monotone functions over

a �nite complete lattice. These equations therefore have a least �xpoint, which

we denote by AFunc

�

. Furthermore, we can reduce this system of equations (by

successive substitution) to a single recursive equation in AFunc(f

`

r

) The syntax

tree of this equation is isomorphic to that for eq: only the labels are di�erent,

but they correspond as follows: a node labelled 0 in the tree for eq corresponds

to a node �~x:fnilg in the tree for the equation for AFunc(f

`

r

); 1 corresponds to

�~x:fidg; x

i

corresponds to �~x:x

i

; ^ corresponds to ?; _ corresponds to [; and a

node labelled F (� � �) corresponds to one labelled AFunc(f

`

r

). The functional �

2

10

�

�

A

A

@

@

�

�

�

@

@

�

�

@

@

�

�

�

�

�

�

�

�

1

2

3

4 5 6

7

8 9

10

11

^

F

F

x

1

x

3

x

2

x

3

x

2

_ 1

x

1

typedef PF ...;

PF nil(PF arg) {return &nil;}

PF id(PF arg) {return arg;}

void main() { PF result = f1(&id,&nil,&id) }

PF f1(PF x1, PF x2, PF x3)

{ return (f2(x1,x2,x3))(f11(x1,x2,x3)); }

PF f2(PF x1, PF x2, PF x3)

{ return f1(f3(x1,x2,x3),f7(x1,x2,x3),f10(x1,x2,x3)); }

PF f3(PF x1, PF x2, PF x3)

{ return f1(f4(x1,x2,x3),f5(x1,x2,x3),f6(x1,x2,x3)); }

PF f4(PF x1, PF x2, PF x3)

{ return x1; }

PF f5(PF x1, PF x2, PF x3)

{ return x3; }

PF f6(PF x1, PF x2, PF x3)

{ return x2; }

PF f7(PF x1, PF x2, PF x3)

{ return (...) ? f8(x1,x2,x3) : f9(x1,x2,x3); }

PF f8(PF x1, PF x2, PF x3)

{ return x3; }

PF f9(PF x1, PF x2, PF x3)

{ return x2; }

PF f10(PF x1, PF x2, PF x3)

{ return &id; }

PF f11(PF x1, PF x2, PF x3)

{ return x1; }

Figure 1: The syntax tree and generated program for Example 3.2

E

`

Equation corresponding to f

`

1 AFunc(f

`

) = �~x:fidg

0 AFunc(f

`

) = �~x:fnilg

x

i

AFunc(f

`

) = �~x:x

i

E

`

1

^E

`

2

AFunc(f

`

) = AFunc(f

`

1

) ? AFunc(f

`

2

)

E

`

1

_E

`

2

AFunc(f

`

) = AFunc(f

`

1

) [AFunc(f

`

2

)

F (E

`

1

; : : : ; E

`

k

) AFunc(f

`

) = AFunc(f

`

r

)(AFunc(f

`

1

); : : : ;AFunc(f

`

k

))

Table 1: Equations for AFunc

11

represented by the right hand side of the resulting equation allows us to express

AFunc

�

as t f�

<i>

2

(?

2

) j i � 0g where ?

2

= �~x:;. Since [L

k

! L] is a �nite

lattice, it follows that AFunc

�

= �

2

<k>

(?

2

) for some �nite k.

AFunc

�

(f) is closely related to the set AEnv

�

(exit(f)): the set of function

pointers that can be returned by a function f , as determined by AFunc

�

(f), is

precisely the set of return aliases for the exit node of f as determined by AEnv

�

:

Lemma 3.3 (Relationship between AFunc

�

(f) and AEnv

�

(exit(f)))

For any f; v

1

; : : : ; v

k

2 Fun with [fml

1

7! v

1

; : : : ; fml

k

7! v

k

] 2 AEnv

�

(init(f)),

AFunc

�

(f)(fv

1

g; : : : ; fv

k

g) = fe(ret) j e 2 AEnv

�

(exit(f)) ^

k

^

i=1

e(fml

i

) = v

i

g:

Proof Omitted.

In contrast with the minimal function graph approach for AEnv

�

where we

were only interested in arguments of each function that could actually occur

during program execution, AFunc

�

considers all possible arguments. However,

the preceding lemma shows that AFunc

�

agrees with AEnv

�

for those arguments

that can occur.

Next we show that given a RMBF instance ' de�ning a function F , the

set of aliases AFunc

�

computed for the corresponding program P

'

is essentially

equivalent to lfp(F), if we associate aliases to nil with 0 and aliases to id with

1: de�ne the function h : L ! B as follows:

h(x) =

�

1 if id 2 x

0 otherwise

Let

~

h : L

n

! B

n

be the componentwise extension of h. The connection between

AFunc

�

and lfp(F) can now be made precise via the notion of one function being

faithful to another. Intuitively, g : L

n

! L is faithful to f : B

n

! B if g(~x)

can return a pointer to the function id if and only if f(~x) evaluates to the

truth-value 1:

De�nition 3.3 A function g 2 [L

n

! L] is faithful to a function f 2 [B

n

! B],

written g � f , if and only if f �

~

h = h � g.

Theorem 3.4 AFunc

�

� lfp(F).

Proof: The proof is by a double induction: the outer level is an arithmetic

induction on i, the number of iterations of the functionals corresponding to

AFunc and F , while the inner level is a structural induction on the formula

E

`

and the corresponding expression AFunc(f

`

) obtained after i unfoldings of

these functionals. The base case for either induction follows directly from the

de�nitions of L, B, and AFunc; the inductive case uses the straightforward

auxiliary results that ? � u and [� t, and that faithfulness is preserved under

function composition.

The Main Theorem is an easy corollary of this result:

12

Corollary 3.1 FP-MayAlias is EXPTIME-complete.

It is interesting, at this point, to revisit the NP-hardness result for function

pointer may-alias analysis due to Zhang and Ryder [ZR94]. As shown in Section

3.1, a relational attributes analysis is necessary for precise function pointer may

alias analysis. It turns out that once we have a relational attributes analysis, the

problem becomes NP-hard even for the intra-procedural case: in other words,

aliasing e�ects are enough to give rise to NP-hardness, even if we dispense with

the additional complications due to interprocedural analysis. This can been

seen by a reduction from 3-SAT which we illustrate by an example. Given the

3-SAT problem (x _ y _ �z) ^ (�x _ �y _ z) ^ (x _ �y _ �z) we generate the following

program:

main()

{

if (...) {x=&id;nx=&nil} else {x=&nil;nx=&id;}

if (...) {y=&id;ny=&nil} else {y=&nil;ny=&id;}

if (...) {z=&id;nz=&nil} else {z=&nil;nz=&id;}

if (...) c1=x else if (...) c1=y else c1=nz;

if (...) c2=nx else if (...) c2=ny else c2=z;

if (...) c3=x else if (...) c3=ny else c3=nz;

}

Here nx,ny,nz represent the negation of the variables x,y,z and c1,c2,c3 rep-

resent the 3 clauses. Each computation path in the �rst group of if-statements

corresponds to a truth assignment for the variables of the clause. Each if-

statement in the second group of statements then corresponds to the evaluation

of the truth value of the corresponding clause: the i

th

clause evaluates to true if

and only if there is a computation path through the i

th

if-statement that causes

ci to be aliased to id. It follows that the original 3-SAT problem is satis�able

if and only if c1,c2,c3 may be simultaneously aliased to id at exit(main).

4 Approximation I: Independent Attributes Analysis

As mentioned in Section 3.1, for pragmatic reasons most program analyses do

not use the relational attribute method considered in the previous section: in-

stead, they ignore dependences between the values taken on by di�erent vari-

ables in order to improve e�ciency. In this section, we consider the complexity

of function pointer may-alias analysis based on this simpli�cation. The dataow

framework in this case can be derived from that of Section 3.2 by systematically

modifying equations to ignore dependences between variables: we underline

identi�ers that are changed in this manner to indicate that this has been done.

Environments now associate, at each program point, each variable with the set

of its aliases: Env = P(Fun)

Var

. Small changes are necessary for the function

CallEnv which becomes

CallEnv(n; f) = fe 2 AEnv(n) j f 2 Lookup(callee(n); e)g

and the function ReturnEnv which becomes

13

ReturnEnv (n; e) = fe

0

2 AEnv(exit(f)) j f2 Lookup(callee(n); e)^

V

1�i�k

e(arg

i

) = e

0

(fml

i

)g:

The major change is with the equation for junction nodes where we now \merge"

environments with matching formals. As a result there will be at most one

environment for every combination of formals at any node.

Next we de�ne two auxiliary function which describe the merging process.

Merge merges all environments, Merge

V

only those that agree for the variables

in V � Var:

Merge(E) = fe 2 Env j 8 v 2 Var : 9 e

0

2 E : e

0

(v) = e(v)g

Merge

V

(E) =

[

e2E

Merge(fe

0

2 E j 8 v 2 V : e

0

(v) = e(v)g):

The new equation for junction nodes is now:

AEnv(n) =Merge

Fml

(

S

p2pred(n)

AEnv(p)):

Exponential time is still su�cient to solve the relaxed problem. Exponential

time is also necessary which can be proven reusing the reduction from section

3.3 and the following lemma, which expresses an intuition very similar to that

of Lemma 3.3:

Lemma 4.1 (Relationship between AFunc

�

(f) and AEnv

�

(exit(f)))

For any function f and alias sets v

1

; : : : ; v

k

with [fml

1

7! v

1

; : : : ; fml

k

7! v

k

] 2

AEnv

�

(init(f)),

AFunc

�

(f)(v

1

; : : : ; v

k

) = fe(ret) j e 2 AEnv

�

(exit(f)) ^

k

^

i=1

e(fml

i

) = v

i

g:

Proof Omitted.

Corollary 4.1 Function pointer may-alias analysis remains complete for de-

terministic exponential time even when the independent attributes method is

used.

This result comes as something of a surprise, since it is usually the case that

concessions in the precision of analysis are accompanied by improvements in the

complexity of the analysis algorithms. In practice, program analyses usually

abandon the relational method in favor of the independent attributes method

because the latter tend to be simpler and more e�cient. This result indicates,

however, that in this case the sacri�ce in precision (illustrated in Example 3.1)

does nothing to improve the worst case complexity of this analysis problem.

5 Approximation II: Context-Insensitive Analysis

The analysis discussed in the previous section \merges" environments at a node

if their formals match, i.e. if they are the result of the same function invo-

cation, but distinguishes between di�erent invocations of the same function.

14

The completeness result of the last section suggests that there can be an ex-

ponential number of di�erent invocations and hence an exponential number of

environments at a node, and keeping track of these di�erent invocations can

be expensive. Our next approximation will be to merge environments even if

they come from di�erent invocations. The e�ect of this is that the analysis no

longer distinguishes between di�erent invocations of a function with di�erent

sets of aliases for the formals. As a result, when propagating the results of a

function call back to the caller at one point, we also propagate aliases arising

from invocations from other program points. In e�ect, the analysis of a function

invocation does not maintain any information about the context from which it

arose: for this reason, this has also been referred to as \zeroth-order control

ow analysis" (0-CFA) [Hei94, Shi88, Shi91].

We can capture the e�ects of this approximation by changing the equations

for return and entry nodes. The equation for entry nodes becomes:

AEnv(n) =Merge(

S

p2pred(n)

fInitEnv(e) j e 2 CallEnv(p; f)g):

For return nodes, we get:

AEnv(n) =Merge

Varnfresg

(fe[res 7! e

0

(ret)] j e 2 AEnv(n

0

)

^ e

0

2 ReturnEnv (n

0

; e)g):

It is not hard to see that in the resulting framework there will be at most one

environment at any node. Hence the problem has been simpli�ed considerably.

In fact, it is equivalent to a problem discussed by Lakhotia [Lak93] who also

shows how to solve it polynomial time.

5

6 Interprocedural Function Pointer Must Alias Analysis

The discussion thus far has focused on interprocedural function pointer may-

alias analysis, which is concerned with determining whether there exists a com-

putation path through the program along which certain aliases can occur. One

can also consider an analysis that is concerned with determining whether certain

aliases must occur along every computation path from the entry point of the

program to some particular program point. Such an analysis is called a \must

alias" analysis:

De�nition 6.1 [Function Pointer Must Aliasing Problem] Given a node n in

the ICFG and a variable v the function pointer must aliasing problem is to

determine if there is a single procedure p so that at the end of all statically

executable path from entry(main) to n v points to p.

We write [n; hv; pi]

must

indicating that v must point to p at n.

Lemma 6.1 [n; hv; pi]

must

, fq j [n; hv; pi] g = fpg

Given the results of the previous sections, the following result is not a great

surprise:

5

Lakhotia assumes a slightly more elaborate parameter passing mechanism.

15

Theorem 6.1 The function pointer must aliasing problem is EXPTIME-

complete.

Proof Given an RMBF problem (F (~x) = expr; ~z) we consider the logically

equivalent problem (F (~x) = false _ expr; ~z). Then we have (lfp(F))(~z) = 0,

[exit(main); hresult; nili]

must

holds.

7 Conclusion

The construction of a interprocedural control ow graph is the �rst step in

any interprocedural dataow analysis. In programs involving function pointers

(or function-valued variables), this requires the determination of the possible

values such pointers can take on. In this paper, we consider complexity issues

for a variety of approaches to this problem. We show that a relational attribute

analysis is necessary if precise results are to be obtained; extend earlier results by

Zhang and Ryder [ZR94] to show that the problem is complete for deterministic

exponential time; and show that for precise analyses, Zhang and Ryder's NP-

hardness result holds even for intra-procedural analyses: that is, aliasing e�ects

alone give rise to NP-hardness even when inter-procedural e�ects are absent.

We then show that sacri�cing precision by resorting to an independent attribute

analysis does not change the complexity result: the problem remains EXPTIME-

complete. However, if context-sensitivity is abandoned as well, it is possible to

get polynomial-time algorithms.

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers. principles,

techniques, and tools. Addison-Wesley, 1986.

[CCHK90] D. Callahan, A. Carle, M. Hall, and K. Kennedy. Constructing the proce-

dure call multigraph. IEEE Trans. on Softw. Eng., 16(4):483, April 1990.

[CBC93] J.-D. Choi, M. Burke, and P. Carini, \E�cient Flow-Sensitive Interproce-

dural Computation of Pointer-Induced Aliases and Side E�ects", Proc.

20th. ACM Symposium on Principles of Programming Languages, Jan.

1993, pp. 232{245.

[Hei94] Nevin Heintze. Control ow analysis and type systems. Technical Report

CMU-CS-94-227, School of Computer Science, Carnegie Mellon University,

December 1994.

[HY86] Paul Hudak and Jonathan Young. Higher-order strictness analysis in un-

typed lambda calculus. In Proc. 13th ACM Symp. on Principles of Pro-

gramming Languages, pages 97{109, St. Petersburg Beach, Florida, Jan-

uary 1986.

[JM81] Neil D. Jones and Steven S. Muchnick. Complexity of ow analysis, in-

ductive assertion synthesis, and a language due to Dijkstra. In Steven S

Muchnick and Neil D Jones, editors, Program Flow Analysis: Theory and

Applications, chapter 12, pages 380{393. Prentice-Hall, 1981.

[JM86] Neil D. Jones and A. Mycroft. Data ow analysis of applicative programs

using minimal function graphs: abridged version. In Proc. 13th ACM

16

Symp. on Principles of Programming Languages, pages 296{306, St. Pe-

tersburg, FL, January 1986.

[Lak93] Arun Lakhotia. Constructing call multigraphs using dependence graphs.

In Proc. 20th ACM Symp. on Principles of Programming Languages, pages

273{284, Charleston, South Carolina, January 1993.

[LR92] William Landi and Barbara G. Ryder. A safe approximate algorithm for

interprocedural pointer aliasing. SIGPLAN Notices, 27(7):235{248, July

1992. Proceedings of the ACM SIGPLAN '92 Conference on Programming

Language Design and Implementation.

[LRZ93] William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural side

e�ect analysis with pointer aliasing. SIGPLAN Notices, 28(6):56{67, June

1993. Proceedings of the ACM SIGPLAN '93 Conference on Programming

Language Design and Implementation.

[Mye81] Eugene W. Myers. A precise interprocedural data ow algorithm. In

Conference Record of the Eighth Annual ACM Symposium on Principles of

Programming Languages, pages 219{230, Williamsburg, Virginia, January

1981.

[Ryd79] Barbara G. Ryder. Constructing the call graph of a program. IEEE Trans-

action of Software Engineering, SE-5(3):216{226, 1979.

[Shi88] Olin G. Shivers. Control ow analysis in scheme. In Proceedings of the

ACM SIGPLAN '88 Conference on Programming Language Design and

Implementation, pages 164{174, Atlanta, Georgia, June 1988.

[Shi91] Olin G. Shivers. Control-Flow Analysis of Higher-Order Languages or

Taming Lambda. PhD thesis, Carnige-Mellon Univeristy, May 1991. Also

available as CMU-CS-91-145.

[SP81] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data

ow analysis. In Steven S Muchnick and Neil D Jones, editors, Pro-

gram Flow Analysis: Theory and Applications, chapter 7, pages 189{233.

Prentice-Hall, 1981.

[Tar55] Alfred Tarski. A lattice-theoretic �xpoint theorem and its applications.

Paci�c J. Math, 5:285{309, 1955.

[WL95] R. P. Wilson and M. S. Lam, \E�cient Context-Sensitive Pointer Anal-

ysis for C Programs", Proc. SIGPLAN '95 Conference on Programming

Language Design and Implementation, June 1995, pp. 1{12.

[ZR94] Sean Zhang and Barbara G. Ryder. Complexity of single level function

pointer aliasing analysis. Technical Report LCSR-TR-233, Laboratory of

Computer Science Research, Rutgers University, October 1994.

17

