
Compressing Differences of Executable Code

Brenda S. Baker�, Udi Manber†, and Robert Muth‡

April 22, 1999

Abstract

Programs change often, and it is important to bring those changes to users as conveniently as possible. The
two most common ways to deliver changes are to send a whole newprogram or to send “patches” that encode the
differences between the two versions, requiring much less space. In this paper, we address computation of patches
for executables of programs. Our techniques take into account the platform-dependent structure of executables, We
identify changes in the executables that are likely to be artifacts of the compilation process, and arrange to reconstruct
these when the patch is applied rather than including them inthe patch; the remaining changes that must be placed
in the patch are likely to be derived from source lines that changed. Our techniques should be useful for updating
programs over slow data lines and should be particularly important for small devices whose programs will need to be
updated through wireless communication. We have implemented our techniques for Digital UNIX Alpha executables;
our experiments show our techniques to improve significantly over previous approaches to updating executables.

1 Introduction

Computing file differences is a common practice for source code files, withtwo main purposes:

� Revision control; we keep the current version of the source and differences compared to all old versions so that
the older versions can be recovered on demand.

� Patching; we use the differences (delta file) to construct a new version based on the old version.

The differences are typically much smaller than the original, leading to significant storage and transmission savings.
This problem area is expected to become particularly important for small devices whose programs may need to be
updated through slow expensive links (such as wireless).

Computing differences between two text files has been studied extensively, e.g. [5, 4, 6, 7, 9]), and many algorithms
have been designed and are deployed daily for the two purposes above. Computing such a difference is usually done
by viewing the files as sequences of lines and applying a sequence-comparison algorithm.

Differences of executables are more complex, because a small change in the source file can create major changes
throughout the executables. Figure 1 illustrates this problem.

Figure 1 shows two executables, A and B. Let us assume that B was derived from A by inserting some additional code
(shaded). The actual difference – byte-wise – is much bigger than the inserted code, due to many secondary changes
caused by the main change. For example,

� a program counter relative branch that jumps over the inserted code will have a different branch displacement,

�Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974,bsb@bell-labs.com
†Department of Computer Science, University of Arizona, Tucson, AZ 85721, and Yahoo! Inc., 3400 Central Exp., Santa Clara, CA 95051,

udi@cs.arizona.edu
‡Department of Computer Science, University of Arizona, Tucson, AZ 85721,muth@cs.arizona.edu

1



Executable A

Executable B

p
o

in
te

r

b
ra

n
ch

Code Data

b
ra

n
ch

p
o

in
te

r

Old DataOld CodeOld Code Inserted Code

Figure 1: Two related executables

� an (absolute) pointer in the data segment pointing to some other place in the data segment will have a new value
since all the addresses have moved up a little.

We have developed techniques for constructing a delta for two executables, which we call theoriginal and theupgrade,
such that it is possible to recover the upgrade from the original and the delta. We refer to the first process asdelta
generationand the second process asdelta application. The goal is to minimize the size of the delta.

We do not assume a knowledge of the changes in the corresponding sourcefiles. But we do assume a knowledge of
the architecture. Our techniques are designed to minimize the size of the differences that must be included in the delta
by relying on recalculation of offsets and similar pieces of information where possible; a single item stored in the
delta may lead to a cascading of computations through the upgrade to reconstruct multiple items. We believe that our
techniques will be adaptable to many architectures.

Two concepts are central to our method:preliminary matching(or pre-matching) andvalue recovery. Both will be
explained in subsequent sections.

Pre-matching is an attempt to identify items, such as instructions, in the original and the update that correspond. They
may look different in the executables due to secondary changes. The idea is tofirst ignore the secondary changes,
find a good correspondence, and fix things later. Pre-matching results in an alignment of certain items in the original
and upgrade executables, together with a list of edit operations, e.g. insertions and deletions, representing primary
changes.

Value recovery tries to deal with secondary changes by predicting values in the upgrade, eg. jump displacements. It is
used both in delta generation and in delta application. We usually proceed from smaller to higher addresses (offsets),
so that when trying to recover a particular value, we can exploit both the alignment and previously recovered values.

In delta generation, we predict an upgrade value from the available information and then check whether it agrees with
the actual known value. If it disagrees, we store it explicitly in the delta. If the value recovery scheme is good, the
number of those items should be small. The predictions are based on several heuristics; the type of the item (e.g.
register or pointer) determines which heuristics are tried and in which order. It is not necessary to include bits in the
delta to encode which heuristic is finally used to predict each value, because this information is also recoverable at
delta application time. To protect against possible globally deleteriouseffects from local pre-matching and predic-
tion choices, the value recovery phase self-tunes to reduce the delta size through several iterations of adjusting the
alignments and the predictions.

During delta application, values that were stored explicitly in the delta are copied into the upgrade, while other values
are recovered. To recover a value, the same sequence of heuristics as in delta generation are used to predict the value,
and the value is copied into the upgrade. Once computed, recovered values may beused as the basis for subsequent

2



recoveries. Thus, a single value stored in the delta may have a cascading effect, enabling the computation of later
values in the upgrade.

Two related approaches have also addressed the problem of reducing the download time for new versions of executa-
bles. The first is to produce a delta from two arbitrary executables without using domain knowledge. We know of two
programs that take this approach: bindiff [1] and PocketSoft’s RTPatch [8]. The second approach is to compress just
the target file using domain knowledge (cf. [3]). This would be advantageous when the old executable is not available.
However, it would be disadvantageous in the case of a software distributor who would like to make a patch easily
available, say on the Web, but only usable by people who have already licensed the original executable.

We have implemented our techniques for Digital UNIX Alpha binaries. Wehave compared the sizes of compressed
delta files produced by our techniques with the compressed upgrade files and with the compressed deltas produced by
bindiff. In nearly all cases our techniques substantially improved upon both. In fact, we usually beat bindiff by a factor
of 2 to 5.

2 Overview of Delta Generation (Exediff)

The program that generates a delta from the original and upgrade executablesis called Exediff. Exediff relies on
the techniques of pre-matching and value recovery: pre-matching for an initial correspondence between items in the
original and upgrade executables, and value recovery to identify which changesdo not need to be explicitly stored in
the delta.

Pre-matching has two purposes: to identify probable primary changes in the upgrade executable compared to the
original executable, and to align the remaining instructions or data items that seem to correspond, even though these
may not be identical because of secondary changes. The approach is heuristic in nature, since we do not assume
access to source code here. However, we envision the deltas being generated by the owner/compiler of the source, and
consequently the delta generation process could have access to additional information which is suitable to improve the
pre-matching and potentially reduce the size of the delta. This possibility is left for further research.

To simplify the presentation we will regard an executable as a sequence of machine instructions. Domain knowledge
about the platform tells us what types of information in instructions could be affected by secondary changes. For
example, insertion of instructions could change jump displacements across the inserted code, and we may need to
ignore jump displacements while we compute an alignment.

Consequently, pre-matching is achieved by transforming the original sequences into two new sequences and then
computing the longest common subsequences of the new sequences. The transformation will usually be lossy, ie. it
throws information away, although the original form is reserved forfurther analysis later. This approach will increase
the number of matched items (e.g. instructions or data bytes) since itemsthat are equal before the transformation will
also be equal afterwards. It will also increase the number of spurious matches and we will describe later how to deal
with this.

Pairs of items aligned in the pre-matching are identical with respect to the transformed sequences, but not necessarily
with respect to the actual executables. For example, in application to the Alpha, described in Section 5, our trans-
formation on instruction sequences preserves special registers but maps allothers to the same value; two matching
instructions may match in opcode but differ in actual registers used.

Consequently, after the matching we distinguish 3 classes of items withrespect to the original and upgrade executables:

� unmatched items, considered to represent primary changes

� matched but unequal items, considered to represent secondary changes

� matched and equal items

Subsequently, we apply value recovery techniques to determine which changes must be stored into the delta, and which
can be recomputed once earlier values have already been determined. Only matched itemsare considered during value
recovery either as producer or consumer of information.

3



For example, if the aligned items include ten instances of changing a value Ato B, we need to store only the first
change into the delta, provided that we can deduce at later occurrences of A in the original executable that we should
substitute B in the upgrade executable. The first instance is a pair ofunrecoverable matched itemswhile the others are
recoverable matched items. The value recovery techniques used for each item depend on domain knowledge andon
the type of item, e.g. register, pointer, or integer.

The first instance may also be recoverable if B is equal to A.

When value recovery is unable to recover certain matched values, it is sometimes caused by a bad alignment, eg.
spurious matches. Exediff keeps track of matched pairs that cause the value recovery to repeatedly fail. In such a case
the alignment will be changed and value recovery restarted. This process is described in more detail in Section 4.2.
Through this iterative process, we eventually arrive at a final alignment, a list of primary changes (unmatched items),
and a list of secondary changes (unrecoverable matched items). We generate the delta as follows:

� We store the primary changes as a sequence of insertion and deletion commands.

� We store the secondary changes by encoding the location and value of the unrecoverable matched items.

We do not need to store the alignment of matching items explicitly in the delta because it is implicitly available from
the insertions and deletions commands.

3 Overview of Delta Application (Exepatch)

The program that applies the delta is called Exepatch. From the original executable and the delta, Exepatch must
construct the upgrade.

From the primary changes stored in the delta, Exepatch can deduce the final alignment found by Exediff. This align-
ment provides a “hull” with no values yet. Exediff fills values into the hull as follows:

� It fills the hull with the values of the primary changes stored in the delta.

� It fills the hull with the values for the unrecoverable matched items stored in the delta, i.e. the secondary changes.

� It recovers the values for the remaining (recoverable) matched items.

The value recovery heuristics are the same ones used by Exediff; the heuristics predict an upgrade value from a value
in the original executable and previous matched and recovered values. However, where Exediff would compare the
predicted value to the upgrade to determine whether to put it into the delta, Exepatch merely places the predicted value
into the delta.

These heuristics are guaranteed to produce the correct upgrade. In particular,the value recovery techniques must pro-
duce the correct values for the upgrade, because by construction, if a value predicted by the value recovery techniques
were not that of the upgrade, Exediff would have placed it into the delta.Our value recovery techniques are described
in the next section.

4 Value Recovery Techniques

Value recovery uses the pre-matching alignment to reconstruct the values of the upgrade. Values are divided into types
based on domain knowledge about the file format and the data within the file. A value may be a tuple representing an
object such as an instruction that has multiple parts, e.g. opcode and registers. However, in this section we give only
a general description of the techniques for simple types of values. The next section describes how these techniques
apply to Alpha executables.

For the moment, we focus on the application of the delta information.Figure 2 shows the data structures representing
the matching.

4



match

match

value

value

original

0 1 2 3 4 5 6 7

increasing indices

8 9 10 11 12 14 15 16 17 1813

upgrade

6 699 98 0

0554849 16

1895

45

Figure 2: The data structures used by our techniques

The concrete task of the value recovery is to reconstruct those values of theupgrade (upgrade[t].value) which
are part of a matching (original[s].match equals t for some s). The values of the upgrade which are not part of
the matching are not reconstructible and we need to store them explicitlyin the delta (primary changes)

To illustrate this, let us consider the case of the ordinary delta generation by diff: if two items (text lines) match, their
values must be identical. So the value recovery is trivial:

upgrade[u].value := original.[upgrade[u].match].value

In the case of our pre-matching,upgrade[t].value andoriginal.[upgrade[t].match].value may
or may not be equal. Consequently, we have developed several simple schemes for value recovery:

1. MatchValue. This scheme replaces the value in the upgrade by the value matched to it in the original, as
described above for diff.

2. TranslateAddress. If a value denotes an address within a file, the index corresponding to that address can
be computed, and if the item at that index has been matched we can derive the new address directly from the
matching. “Address” has a very broad meaning here. Anything that can point us to some item within a matching
can be considered as an address, eg. offsets, table indices, file positions,etc..

Example. Consider the itemupgrade[14] in Figure 2. We know from the file format that this value is
an address. In order to recover it using the TranslateAddress scheme we lookat the value of the matching
item (original[11]). For simplicity, assume that addresses and indices are identical, sooriginal[11]
contains the address of the last item (16) inoriginal, which is matched with the last item (18) inupgrade.
Hence the scheme correctly derives 18 as the value of itemupgrade[14].

3. EqualValue. If a value in the original also occurs in the original in a different matching for which we have
already recovered the corresponding upgrade value, we can use the previously recovered value from that match.
In our implementation, we restrict our attention to a setO of indices in the original;O includes only indices for
which we have previously recovered upgrade values, but the particular setdepends on the type of item.

Example. Consider the itemupgrade[8] in Figure 2. In order to recover it using the EqualValue scheme we
search for the value of the matching item (original[10]). Let us assume thatO= f2;3;4;9g. Among those
indices only itemoriginal[9] agrees in value. Its match,upgrade[7], contains the value 6, which we
assume has been previously recovered. This is also the correct value forupgrade[8].

4. CloseValue. This is similar to the previous scheme, but more general, because we do not restrict ourselves to
find an equal value within the index set O but just a close value. This is useful in cases where we cannot find an
equal value.

5



Example. Consider the itemupgrade[6] in Figure 2. In order to recover it using the CloseValue scheme, we
search for a value close to the value 48 of the matching item (original[4]). Let us assume thatO= f2;3g.
Among those indices, itemoriginal[2] is 49, only one more than 48. Its match,upgrade[1], contains
the value 99, which we assume has been previously recovered. Thus, we calculate 98 correctly as the value for
upgrade[6].

The last two schemes rely on other values that must have been recovered earlier. The simplest strategy is to recover
the value for itemupgrade[u] in order while restricting the setO to smaller indices, ie. subsets of[1 : o�1], where
o is the current index in the original file. Since matchings never “cross”, i.e. the lines connecting matching pairs
as in Figure 2 never cross, this achieves the desired convergence. Other strategies could also achieve convergence.
EqualValue and CloseValue must operate deterministically in order to assure that while computing and applying delta
information the same choices are made.

4.1 Chaining of Value Recovery Schemes

The different methods can be chained. If one scheme fails to predict the correctvalue or is not able to predict any value
in the upgrade, we can try a different scheme. The important point is that the order of application of schemes is fixed
in the program for each value type, so that the same predicted value will be obtained in the generation of the delta and
in the application of the delta. Furthermore, as long as the program can determine from available information such
as the alignment whether a particular scheme failed, no bits are needed in the delta to encode which scheme to use
to recover the value when chaining occurs, eg. the EqualValue scheme might not find any proper previously matched
value and hence will not predict any value.

4.2 Eliminating Spurious Matches

In the case of the last three recovery schemes, certain matches may hurt value recovery in the sense that the eventual
delta will be larger than if the items had not been not matched. Such matches may be spurious, in the sense that these
items were accidentally matched due to the heuristic nature of the pre-matching. Conceptually, we could remove each
match in turn and check the size of the generated delta; if it gets smaller, we would win by eliminating the match. In
practice, we approximate this by computing the “benefits” of each matching during value recovery, eliminating the
matches that “hurt”, and repeating the recovery phase. Likely candidates for elimination are unrecoverable matched
items, since they are part of the delta anyway. This step is iterated severaltimes.

5 Application: DEC UNIX Alpha Executables

DEC UNIX Alpha executables are stored using the ECOFF object file format[2]. As with most UNIX systems, an
executable is composed of three segments

1. Text. Contains mostly instructions plus read-only constants.

2. Data. Contains initialized data structures.

3. Bss. Contains zero initialized data structures.

Only the Text and Data Segment, together with other administrative information (eg. the size of the Bss Segment,
symbol table information, relocation information, etc.), are stored in the executable.

We apply pre-matching and value recovery to the Data Segment and the code bearing parts of the Text Segment. For
the remaining parts of the executable we use bindiff as described in [1] to compute the delta information.

6



5.1 Text Segment

For simplicity, we assume that the Text Segment consists entirely ofinstructions. Hence it can be regarded as a
sequence of 32-bit-wide Alpha instruction words. An Alpha instruction typically has two operand registers and one
result register. At the expense of one or more registers, an instruction might also include an immediate value. For
simplicity, we assume that each instruction has three registersand an immediate value. The format is

opcode reg1 reg2 reg3 immediate

If an instruction has fewer than 3 registers, we substitutezeroor f zerofor the missing ones.Zero is a register that is
hardwired to the integer value 0, whilef zero is its floating point equivalent. Other special purpose registers are the
stack pointerspand the global pointergp.

We defineAdminRegs:= fzero; f zero;gp;spg

5.1.1 Pre-matching

We need to abstract away all the information that is likely to be subject of secondary changes, such as immediates and
ordinary registers. The following transformation function is used:

opcode reg1 reg2 reg3 immediate! opcode RFilter(reg1) RFilter(reg2) RFilter(reg3) IFilter (immediate)

where
RFilter(r) := if r 2 AdminRegsthenr elseε endif

and
IFilter (i) := if i � 0 then POS else NEG endif

5.1.2 Value Recovery

Pre-matching for instructions is based on incomplete information about registers and immediates. Value recovery
needs to reconstruct those values.

Register Recovery

Register recovery uses the MatchValue and the EqualValue schemes to recover theregisters of an instruction. Since
there are three registers per instruction a pre-matching of two instructions represents three pre-matchings of the corre-
sponding registers in the following order: first operand register, second operand register, result register,

We employ MatchValue if the original register is inAdminRegsor if the instruction containing the register is function
call or return. The latter case is motivated by the calling conventions, which dictate the register to be used by those
instructions in most cases.

EqualValue is employed for all other cases. We divide the instruction (and hence register) matching into smaller
matchings each representing one function within the executable. This is possible since the instructions belonging to
one function are consecutive in the Text Segment and special instructions mark the beginning of a function. The subset
O of indices is then chosen as the set of matched indices that are smaller than the current one and still lie within the
current function. The idea here is that the choice of registers in one function rarely influences the choice of registers
in another function. If EqualValue is unable to recover a register because it cannot find another match involving the
same register we try MatchValue, i.e. we chain two recovery techniques as described in the Section 4.1. Note that no
bit is needed in the delta to encode which scheme is used.

Immediate Recovery

We found it beneficial to classify the immediate value based on opcodes and registers inAdminRegsand then perform
the value recovery within those classes. Pre-matching will only match instructions belonging to the same class. Often
we limit our search to matches within the current function, as we did withregister recovery. The classes and the
corresponding recovery chains were found by experimenting. All four recovery heuristics are used. Because of space
restriction we are only able to discuss two examples here.

7



� Class SpLoadStore. This class contains all loads and stores to and from thestack. The immediate value is
the stack frame offset of the data item loaded or stored. The relative position of those data items on the stack
is unlikely to change. Hence we apply the CloseValue heuristics first. (The O set contains all the matched
indices that are smaller than the current one, are of class SpLoadStore, and liewithin the current function). If
CloseValue is unable to recover a offset we fall back to MatchValue.

� Class Branch. This class contains all conditional and unconditional branch instructions. The immediate value
is a program-counter relative branch displacement. Since conversion between relative and absolute addresses is
trivial, we will regard the value as an absolute address. We first attemptto recover the displacement using the
TranslateAddress scheme. If this scheme does not provide an answer, we fall back to EqualValue. If this fails
too, we resort to the MatchValue scheme.

5.2 Data Segment

The Data Segment contains initialized data structures either specified by theprogrammer or generated by the com-
piler/linker. It also contains 64-bit (8-byte) pointers into the Text, Data, and Bss Segments. Those pointers are 8-byte
aligned. We can therefore determine with high probability whether an arbitrary sequence of 8 bytes represents a
pointer or not.

5.2.1 Pre-matching

The transformation function is the identity function for most data.However, pointers receive special treatment:

� Text Pointer. The byte sequence points into the Text Segment to instructioni.

byte0 byte1 byte2 byte3 byte4 byte5 byte6 byte7! TEXT hash(opcodei;opcodei+1;opcodei+2)

The hash function is used to encode information about the target of the pointer, to make it more likely that
pointers will be matched if they point to the corresponding regionsof code.

� Data Pointer. The byte sequence points into the Data Segment to byteb .

byte0 byte1 byte2 byte3 byte4 byte5 byte6 byte7! DATA b

� Other Pointer. The byte sequence is a pointer but neither a text nor a data pointer.

byte0 byte1 byte2 byte3 byte4 byte5 byte6 byte7!OTHER

� Ordinary Data.

byte0 byte1 byte2 byte3 byte4 byte5 byte6 byte7! byte0 byte1 byte2 byte3 byte4 byte5 byte6 byte7

5.2.2 Value Recovery

Text and Data Pointers are recovered using the following chain of recovery schemes: TranslateAddress, CloseValue
(whereO contains all the matched indices smaller than the current index of the same pointer type), MatchValue. The
pre-matching alignment for the Text Segment is used when dealing with Text Pointers.

Other Pointers are recovered using the following chain of recovery schemes: CloseValue (whereO contains all the
matched indices smaller than the current index of Other Pointers), MatchValue.

Ordinary Data is recovered using MatchValue.

8



program upgrade.gz bindiff.gz delta.gz
bytes bytes % of upgrade.gz bytes % of upgrade.gz % of bindiff.gz

alto: identical versions 162470 54 0.0 155 0.1 287.0
alto gcc -O2! gcc -O3 162470 83051 51.1 20793 12.8 25.0
alto: changed reg. alloc. 162549 109753 67.5 16813 10.3 15.3
alto: added a printf 162470 54819 33.7 6237 3.8 11.4
agrep 3.6! 4.0 121849 92437 75.9 42468 34.9 45.9
agrep 4.0! 4.1 121753 14535 11.9 3531 2.9 24.3
glimpse 3.6! 4.0 235774 198059 84.0 109329 46.4 55.2
glimpse 4.0! 4.1 235913 132726 56.3 23200 9.8 17.5
glimpseindex 3.6! 4.0 205945 166122 80.7 82545 40.1 49.7
glimpseindex 4.0! 4.1 206074 124173 60.3 18473 9.0 14.9
wgconvert 4.0! 4.1 166789 93493 56.1 15688 9.4 16.8
netscape 3.01! 3.04 2558478 1471610 57.5 284992 11.1 19.4
icalc 2.1b2!2.2 589862 54819 9.3 6237 1.1 11.4
gimp 0.99.19! 1.00.00 684725 495869 72.4 191657 28.0 38.7
iconx 9.0! 9.3 242013 233730 96.6 38121 15.8 16.3
cc1 (gcc) 2.8.0! 2.8.1 831626 847457 101.9 76313 9.2 9.0
rcc (lcc) 3.2! 3.6 157685 99017 62.8 22019 14.0 22.2
rcc (lcc) 4.0! 4.1 237033 645 0.3 303 0.1 47.0
apache 1.2.4! 1.3.0 200413 201470 100.5 253300 126.4 125.7
apache 1.3.0! 1.3.1 201529 119585 59.3 42038 20.9 35.2

Table 1: Experimental results for Set 1

6 Experimental Results

6.1 Set 1

We ran 20 experiments on pairs of executables for 12 distinct programs. The results are shown in Table 1. We
compared the gzipped deltas produced by our techniques with the size of the gzipped upgrades and the gzipped deltas
produced by bindiff.

The first four experiments were simple checks on behavior when the original source and upgrade source were identical
or almost identical. In the first experiment, the original and upgrade executables were identical. In the second, only
the compiler optimization level was changed to create the second executable. In the third, the compiler was forced to
change the register allocation for the upgrade executable. In the fourth, a singleprintf statement was added to the
source.

The remaining 16 experiments tested different versions of executables forthe same program; the specific programs
and versions are listed in the table. In every experiment except one, the size of the gzipped delta file produced by our
techniques was substantially smaller than both the gzipped upgrade and thegzipped delta produced by bindiff. For
upgrades that affected only the minor version number of a program we typically observed a fivefold reduction in the
delta size (compared to bindiff), otherwise we observed a twofold reduction. The one exception was apache versions
1.2.4 and 1.3.0, for which the gzipped delta produced by our techniques was 26% larger than the gzipped upgrade; the
gzipped delta produced by bindiff was just slightly (0.5%) larger thanthe gzipped upgrade. In examining the source
files, we observed that the source files had been extensively reorganized. However, for apache versions 1.3.0 and 1.3.1,
our techniques did produce substantial improvement.

6.2 Set 2

We ran experiments with four versions (V290,V320,V321,V332) ofless, a pager for text files. The sizes in bytes of
the gzipped executable and the gzipped source for the different versions are shown in Table 2

9



Program program.gz src.gz
V290 43416 107817
V320 47470 122318
V321 47473 122328
V334 49635 130563

Table 2: Characteristics of differentless versions

Programs src.diff.gz delta.gz
V290! V320 28418 21955
V290! V321 28425 21971
V290! V332 38179 28395
V320! V321 254 163
V320! V332 15518 14711
V321! V332 15477 14717

Table 3: Experimental results for Set 2

In Table 3 we compare each version with all newer versions. We compare the size in bytes of the gzipped delta for the
source code (determined usingdiff -n) with the gzipped delta produced by Exediff.

The delta of the executables code compares favorably with the diff of thesource code especially since we only con-
sidered true source code and excluded makefiles and configuration scripts.

7 Conclusions

We have shown that our techniques can produce deltas for old and new versions of executables that are significantly
smaller than the compressed new version, and also significantly smaller thanthe delta files produced by bindiff. We
can even compete with source code patches when the changes are not too dramatic. Ingeneral, source code patches
will tend to be smaller than executables patches, but for most applications,especially for small devices, compiling at
the end user level is not feasible. Most software companies are also reluctantto release source code. Our techniques
could make a significant difference in how patches are distributed. We plan to extend our techniques to other plattforms
in particular java class files.

References

[1] Kris Coppieters. A cross-platform binary diff.Dr. Dobb’s Journal, May 1995.

[2] Digital Equipment Corp.Object File / Symbol Table Format Specification. Digital Unix, July 1998.

[3] Jens Ernst, William Evans, Christopher W. Fraser, Steven Lucco, andTodd A. Proebsting. Code compression.
ACM SIGPLAN Notices, 32(5):358–365, May 1997.

[4] D.S. Hirschberg. Algorithms for the longest common subsequenceproblem.J. ACM, pages 664–675, Oct. 1977.

[5] J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest common subsequences.Comm. ACM,
20(5):350–353, 1977.

[6] Webb Miller and Eugene W. Myers. A file comparison program.Software, Practice, and Experience, 15(11):1025–
1040, 1985.

[7] Eugene W. Myers. An O(ND) difference algorithm and its variations.Algorithmica, 1:251–266, 1986.

[8] PocketSoft. .RTPatch Professional, Feb. 23, 1998.http://www.pocketsoft.com/products.html.

[9] Walter F. Tichy. The string-to-string correction problem with block moves. ACM Trans. on Comput. Syst.,
2(4):309–321, 1984.

10


