Compressing Differences of Executable Code

Brenda S. BakéUdi Manbef and Robert Muth

April 22, 1999

Abstract

Programs change often, and it is important to bring thosegds to users as conveniently as possible. The
two most common ways to deliver changes are to send a wholgramyvam or to send “patches” that encode the
differences between the two versions, requiring much Ipases In this paper, we address computation of patches
for executables of programs. Our techniques take into axtdbe platform-dependent structure of executables, We
identify changes in the executables that are likely to béaats of the compilation process, and arrange to recoctstru
these when the patch is applied rather than including thetiheipatch; the remaining changes that must be placed
in the patch are likely to be derived from source lines thangied. Our techniques should be useful for updating
programs over slow data lines and should be particularipitamt for small devices whose programs will need to be
updated through wireless communication. We have impleatbmtir techniques for Digital UNIX Alpha executables;
our experiments show our techniques to improve signifigauér previous approaches to updating executables.

1 Introduction

Computing file differences is a common practice for source code fileswitimain purposes:

¢ Revision control; we keep the current version of the source and diffesstcompared to all old versions so that
the older versions can be recovered on demand.

e Patching; we use the differences (delta file) to construct a new versied baghe old version.

The differences are typically much smaller than the original, leading tofignt storage and transmission savings.
This problem area is expected to become particularly important for smattesewhose programs may need to be
updated through slow expensive links (such as wireless).

Computing differences between two text files has been studied extensigelfs g4, 6, 7, 9]), and many algorithms
have been designed and are deployed daily for the two purposes above. thgrspah a difference is usually done
by viewing the files as sequences of lines and applying a sequence-compayitha.

Differences of executables are more complex, because a small change in e fleuran create major changes
throughout the executables. Figure 1 illustrates this problem.

Figure 1 shows two executables, A and B. Let us assume that B was deriwed tog inserting some additional code
(shaded). The actual difference — byte-wise — is much bigger than thecidserde, due to many secondary changes
caused by the main change. For example,

e a program counter relative branch that jumps over the inserted code wéllshdifferent branch displacement,

*Bell Laboratories, Lucent Technologies, 700 Mountain AverMurray Hill, NJ 07974sb@el | -1 abs. com

TDepartment of Computer Science, University of Arizona, siut, AZ 85721, and Yahoo! Inc., 3400 Central Exp., SantaaCl@A 95051,
udi @s. ari zona. edu

*Department of Computer Science, University of Arizona, st AZ 85721nut h@s. ar i zona. edu

Executable A

branch

pointer >

Code Data

Executable B

S &
g £
& 2
Old Code Inserted Code Old Code Old Data

Figure 1: Two related executables

¢ an (absolute) pointer in the data segment pointing to some other pléoe data segment will have a new value
since all the addresses have moved up a little.

We have developed techniques for constructing a delta for two execytahiek we call theoriginal and theupgrade
such that it is possible to recover the upgrade from the original andéhla. We refer to the first processdwsita
generatiorand the second processawdta application The goal is to minimize the size of the delta.

We do not assume a knowledge of the changes in the corresponding fias:cBut we do assume a knowledge of
the architecture. Our techniques are designed to minimize the size offgrentes that must be included in the delta
by relying on recalculation of offsets and similar pieces of informatioenstpossible; a single item stored in the
delta may lead to a cascading of computations through the upgrade to raconsiltiple items. We believe that our
techniques will be adaptable to many architectures.

Two concepts are central to our methgateliminary matchingor pre-matching andvalue recovery Both will be
explained in subsequent sections.

Pre-matching is an attempt to identify items, such as instructionseiarifinal and the update that correspond. They
may look different in the executables due to secondary changes. The idefir$ ignore the secondary changes,
find a good correspondence, and fix things later. Pre-matching results ilgameant of certain items in the original
and upgrade executables, together with a list of edit operations, egytioms and deletions, representing primary
changes.

Value recovery tries to deal with secondary changes by predicting values ipdghade, eg. jump displacements. Itis
used both in delta generation and in delta application. We usually proazadsfaller to higher addresses (offsets),
so that when trying to recover a particular value, we can exploit both theraént and previously recovered values.

In delta generation, we predict an upgrade value from the availablenaf@n and then check whether it agrees with
the actual known value. If it disagrees, we store it explicitly in théadelf the value recovery scheme is good, the
number of those items should be small. The predictions are based emalskguristics; the type of the item (e.g.

register or pointer) determines which heuristics are tried and in whidérolt is not necessary to include bits in the
delta to encode which heuristic is finally used to predict each value, becassaftdrtmation is also recoverable at

delta application time. To protect against possible globally deletegtiasts from local pre-matching and predic-
tion choices, the value recovery phase self-tunes to reduce the deltarsaghtseveral iterations of adjusting the
alignments and the predictions.

During delta application, values that were stored explicitly in theadmie copied into the upgrade, while other values
are recovered. To recover a value, the same sequence of heuristics as in deltéogesrerased to predict the value,
and the value is copied into the upgrade. Once computed, recovered values osedlaes the basis for subsequent

recoveries. Thus, a single value stored in the delta may have a cascadiciy effabling the computation of later
values in the upgrade.

Two related approaches have also addressed the problem of reducing theatbtimk for new versions of executa-
bles. The first is to produce a delta from two arbitrary executablesulithsing domain knowledge. We know of two
programs that take this approach: bindiff [1] and PocketSoft's RTP&IciThe second approach is to compress just
the target file using domain knowledge (cf. [3]). This would be acag@bdus when the old executable is not available.
However, it would be disadvantageous in the case of a software distritvho would like to make a patch easily
available, say on the Web, but only usable by people who have alreadydittresoriginal executable.

We have implemented our techniques for Digital UNIX Alpha binaries. HAe compared the sizes of compressed
delta files produced by our techniques with the compressed upgrade filestankercompressed deltas produced by
bindiff. In nearly all cases our techniques substantially improved uptm in fact, we usually beat bindiff by a factor
of 2to 5.

2 Overview of Delta Generation (Exediff)

The program that generates a delta from the original and upgrade execusatddied Exediff. Exediff relies on
the techniques of pre-matching and value recovery: pre-matching for aal ootrespondence between items in the
original and upgrade executables, and value recovery to identify which chdoged need to be explicitly stored in
the delta.

Pre-matching has two purposes: to identify probable primary changé® inpgrade executable compared to the
original executable, and to align the remaining instructions or datasitbat seem to correspond, even though these
may not be identical because of secondary changes. The approach is heuristigr@) since we do not assume
access to source code here. However, we envision the deltas being generateovayeticompiler of the source, and
consequently the delta generation process could have access to additimmaatidn which is suitable to improve the
pre-matching and potentially reduce the size of the delta. This passibileft for further research.

To simplify the presentation we will regard an executable as a sequencacbima instructions. Domain knowledge
about the platform tells us what types of information in instrucicould be affected by secondary changes. For
example, insertion of instructions could change jump displacementssatmsnserted code, and we may need to
ignore jump displacements while we compute an alignment.

Consequently, pre-matching is achieved by transforming the origatalesices into two new sequences and then
computing the longest common subsequences of the new sequences. Tioenvatien will usually be lossy, ie. it
throws information away, although the original form is reservedddher analysis later. This approach will increase
the number of matched items (e.g. instructions or data bytes) sincethat®re equal before the transformation will
also be equal afterwards. It will also increase the number of spurious esadcidl we will describe later how to deal
with this.

Pairs of items aligned in the pre-matching are identical with respect toahsformed sequences, but not necessarily
with respect to the actual executables. For example, in application to tha Ad@scribed in Section 5, our trans-
formation on instruction sequences preserves special registers but mapieesd to the same value; two matching
instructions may match in opcode but differ in actual registers used.

Consequently, after the matching we distinguish 3 classes of itemsagiplect to the original and upgrade executables:
e unmatched items, considered to represent primary changes
¢ matched but unequal items, considered to represent secondary changes

e matched and equal items

Subsequently, we apply value recovery techniques to determine which chamgdsenstored into the delta, and which
can be recomputed once earlier values have already been determined. Only matchackimsidered during value
recovery either as producer or consumer of information.

For example, if the aligned items include ten instances of changing a vataeBAwe need to store only the first
change into the delta, provided that we can deduce at later occurrences of A ifgthel@xecutable that we should
substitute B in the upgrade executable. The first instance is a paire€overable matched itemile the others are
recoverable matched item$he value recovery techniques used for each item depend on domain knowledge and
the type of item, e.g. register, pointer, or integer.

The first instance may also be recoverable if B is equal to A.

When value recovery is unable to recover certain matched values, it is sometimed bgus bad alignment, eg.
spurious matches. Exediff keeps track of matched pairs that cause the valusryd¢ooepeatedly fail. In such a case
the alignment will be changed and value recovery restarted. This procesgigbddsn more detail in Section 4.2.
Through this iterative process, we eventually arrive at a final alignnadigt of primary changes (unmatched items),
and a list of secondary changes (unrecoverable matched items). We generattathe fidlows:

¢ We store the primary changes as a sequence of insertion and deletion commands

¢ We store the secondary changes by encoding the location and value of¢éleeverable matched items.

We do not need to store the alignment of matching items explicitlyerdiita because it is implicitly available from
the insertions and deletions commands.

3 Overview of Delta Application (Exepatch)

The program that applies the delta is called Exepatch. From the origisalble and the delta, Exepatch must
construct the upgrade.

From the primary changes stored in the delta, Exepatch can deduce the finadealigound by Exediff. This align-
ment provides a “hull” with no values yet. Exediff fills values into thdllas follows:

o Itfills the hull with the values of the primary changes stored in théadel
o ltfills the hull with the values for the unrecoverable matched itemgdtiorthe delta, i.e. the secondary changes.

¢ It recovers the values for the remaining (recoverable) matched items.

The value recovery heuristics are the same ones used by Exediff; theticsymiedict an upgrade value from a value
in the original executable and previous matched and recovered values. Howbkeez Exediff would compare the
predicted value to the upgrade to determine whether to put it into tkeg, @elepatch merely places the predicted value
into the delta.

These heuristics are guaranteed to produce the correct upgrade. In pattiewatue recovery techniques must pro-
duce the correct values for the upgrade, because by construction, if a vedlieted by the value recovery techniques
were not that of the upgrade, Exediff would have placed it into the d@liavalue recovery techniques are described
in the next section.

4 Value Recovery Techniques

Value recovery uses the pre-matching alignment to reconstruct the vallesugfgrade. Values are divided into types
based on domain knowledge about the file format and the data withinghd&fralue may be a tuple representing an
object such as an instruction that has multiple parts, e.g. opcode asteregHowever, in this section we give only
a general description of the techniques for simple types of values. NMiseaion describes how these techniques
apply to Alpha executables.

For the moment, we focus on the application of the delta informak@ure 2 shows the data structures representing
the matching.

original

value 49 | 45 48 5 5 16 0
match| @ [] ? .\ [] [[[] [] /. /. 0\ [[J [] [
match | @ 4 [[] [] \O \ 0/ 0/ [[J [[[J \0 [[[J
value 99 95 98 6 6 18 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

increasing indices

Figure 2: The data structures used by our techniques

The concrete task of the value recovery is to reconstruct those valuesuyigrede gpgr ade[t] . val ue) which
are part of a matchingf i gi nal [s] . mat ch equals t for some s). The values of the upgrade which are not part of
the matching are not reconstructible and we need to store them expliditlg delta (primary changes)

To illustrate this, let us consider the case of the ordinary delta gémekat diff: if two items (text lines) match, their
values must be identical. So the value recovery is trivial:

upgrade[u] . val ue : = original.[upgrade[u].mtch].val ue

In the case of our pre-matchingpgr ade[t] . val ue andori gi nal . [upgrade[t]. mat ch]. val ue may
or may not be equal. Consequently, we have developed several simpleesclogivalue recovery:

1. MatchValue. This scheme replaces the value in the upgrade by the value matched tdét amiginal, as
described above for diff.

2. TrandateAddress. If a value denotes an address within a file, the index correspondirftatatidress can
be computed, and if the item at that index has been matched we can derive thednessatirectly from the
matching. “Address” has a very broad meaning here. Anything that can Eoiotsome item within a matching
can be considered as an address, eg. offsets, table indices, file posiiions,

Example. Consider the itempgr ade[14] in Figure 2. We know from the file format that this value is
an address. In order to recover it using the TranslateAddress scheme wat lttek value of the matching
item (ori gi nal [11]). For simplicity, assume that addresses and indices are identiaa,iggi nal [11]
contains the address of the last item (16diri gi nal , which is matched with the last item (18)upgr ade.
Hence the scheme correctly derives 18 as the value ofutegn ade[14] .

3. EqualValue. If a value in the original also occurs in the original in a different chatg for which we have
already recovered the corresponding upgrade value, we can use the presgoasered value from that match.
In our implementation, we restrict our attention to a®eif indices in the originalQ includes only indices for
which we have previously recovered upgrade values, but the particuldeends on the type of item.

Example. Consider the iteopgr ade[8] in Figure 2. In order to recover it using the EqualValue scheme we
search for the value of the matching itear { gi nal [10]). Let us assume th& = {2,3,4,9}. Among those
indices only itemor i gi nal [9] agrees in value. Its matchpgr ade[7], contains the value 6, which we
assume has been previously recovered. This is also the correct valysgioade[8] .

4. CloseValue. This is similar to the previous scheme, but more general, because wa& destrict ourselves to
find an equal value within the index set O but just a close value. Thiefulin cases where we cannot find an
equal value.

Example. Consider the iteopgr ade[6] in Figure 2. In order to recover it using the CloseValue scheme, we
search for a value close to the value 48 of the matching itam §i nal [4]). Let us assume th&@ = {2,3}.
Among those indices, iteror i gi nal [2] is 49, only one more than 48. Its matalpgr ade[1], contains

the value 99, which we assume has been previously recovered. Thus, wates®&itorrectly as the value for
upgr ade[6] .

The last two schemes rely on other values that must have been recovered eadisimplest strategy is to recover

the value for itenupgr ade[u] in order while restricting the s€@ to smaller indices, ie. subsets|af: 0 — 1], where

o is the current index in the original file. Since matchings never “cross’, the lines connecting matching pairs

as in Figure 2 never cross, this achieves the desired convergence. Otlegrietrabuld also achieve convergence.
EqualValue and CloseValue must operate deterministically in order toestdsu while computing and applying delta

information the same choices are made.

4.1 Chaining of Value Recovery Schemes

The different methods can be chained. If one scheme fails to predict the a@iezbr is not able to predict any value
in the upgrade, we can try a different scheme. The important point isht@airtler of application of schemes is fixed
in the program for each value type, so that the same predicted value witthmed in the generation of the delta and
in the application of the delta. Furthermore, as long as the program camietdrom available information such
as the alignment whether a particular scheme failed, no bits are needed intthtod=icode which scheme to use
to recover the value when chaining occurs, eg. the EqualValue scheme midimchany proper previously matched
value and hence will not predict any value.

4.2 Eliminating Spurious M atches

In the case of the last three recovery schemes, certain matches may hurt valueyrigctheesense that the eventual
delta will be larger than if the items had not been not matched. Such matchesrmgpyrious, in the sense that these
items were accidentally matched due to the heuristic nature of the pre-nmt€lunceptually, we could remove each
match in turn and check the size of the generated delta; if it gets smaller, we wiouby eliminating the match. In
practice, we approximate this by computing the “benefits” of each matchinggivalue recovery, eliminating the
matches that “hurt”, and repeating the recovery phase. Likely candidates foratimni@re unrecoverable matched
items, since they are part of the delta anyway. This step is iterated strersl

5 Application: DEC UNIX Alpha Executables

DEC UNIX Alpha executables are stored using the ECOFF object file fojf2haths with most UNIX systems, an
executable is composed of three segments

1. Text. Contains mostly instructions plus read-only constants.
2. Data. Contains initialized data structures.

3. Bss. Contains zero initialized data structures.

Only the Text and Data Segment, together with other administratfeenration (eg. the size of the Bss Segment,
symbol table information, relocation information, etc.), are stonetié executable.

We apply pre-matching and value recovery to the Data Segment and the codg Ipeats of the Text Segment. For
the remaining parts of the executable we use bindiff as described in bhpute the delta information.

5.1 Text Segment

For simplicity, we assume that the Text Segment consists entirelystiuctions. Hence it can be regarded as a
sequence of 32-bit-wide Alpha instruction words. An Alpha instion typically has two operand registers and one
result register. At the expense of one or more registers, an @tistnumight also include an immediate value. For
simplicity, we assume that each instruction has three regateran immediate value. The formatis

opcode regreg regs immediate

If an instruction has fewer than 3 registers, we substiteteor fzerofor the missing onesZerois a register that is
hardwired to the integer value 0, whifeerois its floating point equivalent. Other special purpose registers are th
stack pointespand the global pointegp.

We defineAdminRegs= {zerq fzeragp,sp}

5.1.1 Pre-matching

We need to abstract away all the information that is likely to be subje@afrelary changes, such as immediates and
ordinary registers. The following transformation function isds

opcode reg regp regs immediate— opcode RFiltefreg;) RFilter(regp) RFilter(regs) IFilter (immediaté

where
RFilter(r) := if r € AdminRegshenr elsee endif

and
IFilter (i) := if i > 0 then POS else NEG endif

5.1.2 Value Recovery

Pre-matching for instructions is based on incomplete information tategiisters and immediates. Value recovery
needs to reconstruct those values.

Register Recovery

Register recovery uses the MatchValue and the EqualValue schemes to recaegiidters of an instruction. Since
there are three registers per instruction a pre-matching of two atiins represents three pre-matchings of the corre-
sponding registers in the following order: first operand registrond operand register, result register,

We employ MatchValue if the original register isAdminReg®r if the instruction containing the register is function
call or return. The latter case is motivated by the calling conventionghndictate the register to be used by those
instructions in most cases.

EqualValue is employed for all other cases. We divide the instructiod K@mce register) matching into smaller
matchings each representing one function within the executable. Thiss®posince the instructions belonging to
one function are consecutive in the Text Segment and special instrsinti@ank the beginning of a function. The subset
O of indices is then chosen as the set of matched indices that are smaller tharréime ane and still lie within the
current function. The idea here is that the choice of registers in araifun rarely influences the choice of registers
in another function. If EqualValue is unable to recover a register bectinaanot find another match involving the
same register we try MatchValue, i.e. we chain two recovery techniques as @ddoribhe Section 4.1. Note that no
bit is needed in the delta to encode which scheme is used.

Immediate Recovery

We found it beneficial to classify the immediate value based on opcodes astregiAdminRegsnd then perform
the value recovery within those classes. Pre-matching will only matttugi®ns belonging to the same class. Often
we limit our search to matches within the current function, as we did weitlister recovery. The classes and the
corresponding recovery chains were found by experimenting. All foumegdeuristics are used. Because of space
restriction we are only able to discuss two examples here.

¢ Class SpLoadStore. This class contains all loads and stores to and frata¢ke The immediate value is
the stack frame offset of the data item loaded or stored. The relativiégmosf those data items on the stack
is unlikely to change. Hence we apply the CloseValue heuristics firste Orket contains all the matched
indices that are smaller than the current one, are of class SpLoadStore, aittiliethe current function). If
CloseValue is unable to recover a offset we fall back to MatchValue.

e Class Branch. This class contains all conditional and unconditional brasthigtions. The immediate value
is a program-counter relative branch displacement. Since conversion betiatererand absolute addresses is
trivial, we will regard the value as an absolute address. We first attemmptover the displacement using the
TranslateAddress scheme. If this scheme does not provide an answer, wackalbtEqualValue. If this fails
too, we resort to the MatchValue scheme.

5.2 Data Segment

The Data Segment contains initialized data structures either specified pyatp@mmer or generated by the com-
piler/linker. It also contains 64-bit (8-byte) pointers into thfT®ata, and Bss Segments. Those pointers are 8-byte
aligned. We can therefore determine with high probability whether anrarpisequence of 8 bytes represents a
pointer or not.

5.2.1 Pre-matching

The transformation function is the identity function for most d&tewever, pointers receive special treatment:

e Text Pointer. The byte sequence points into the Text Segment to instruiction

byte byte byte byte; byte; byte; byte; byte; — TEXT hasi{opcode opcode;q,0pcodey o)

The hash function is used to encode information about the target obthtep to make it more likely that
pointers will be matched if they point to the corresponding regainede.
e Data Pointer. The byte sequence points into the Data Segment totbyte

byte) byte byte bytes byte, bytes bytes byte; — DATA b
e Other Pointer. The byte sequence is a pointer but neither a text nor a data pointer.
byte, byte, byte bytes bytey bytes bytes byte; — OTHER

e Ordinary Data.

byte, byte byte bytes bytey byte; byte; byte; — byte) byte byte, byte; bytey byte; bytes byte

5.2.2 Value Recovery

Text and Data Pointers are recovered using the following chain of recovkeeyres: TranslateAddress, CloseValue
(whereO contains all the matched indices smaller than the current index of the santerpigpe), MatchValue. The
pre-matching alignment for the Text Segment is used when dealing wittPbinters.

Other Pointers are recovered using the following chain of recovery schenwm®eMalue (wheré® contains all the
matched indices smaller than the current index of Other Pointers), Mat@Valu

Ordinary Data is recovered using MatchValue.

program upgrade.gZz bindiff.gz delta.gz
bytes bytes % of upgrade.gz bytes % of upgrade.gz % of bindiff.gz
alto: identical versions 162470 54 0.0 155 0.1 287.0
alto gcc -O2— gcc -03 162470| 83051 51.1) 20793 12.8 25.0
alto: changed reg. alloc. 162549 109753 67.5 16813 10.3 15.3
alto: added a printf 162470 54819 33.7] 6237 3.8 11.4
agrep 3.6—+ 4.0 121849| 92437 75.9| 42468 34.9 45.9
agrep 4.0~ 4.1 121753 14535 11.9] 3531 2.9 24.3
glimpse 3.6+ 4.0 235774| 198059 84.0 109329 46.4 55.2
glimpse 4.0~ 4.1 235913| 132726 56.3] 23200 9.8 17.5
glimpseindex 3.6~ 4.0 205945| 166122 80.7| 82545 40.1 49.7
glimpseindex 4.0~ 4.1 206074| 124173 60.3 18473 9.0 14.9
wgconvert4.0- 4.1 166789| 93493 56.1) 15688 9.4 16.8
netscape 3.0% 3.04 2558478| 1471610 57.5 284992 111 19.4
icalc 2.1b2—2.2 589862| 54819 9.3] 6237 11 11.4
gimp 0.99.19- 1.00.00 684725| 495869 72.4] 191657 28.0 38.7
iconx 9.0— 9.3 242013| 233730 96.6| 38121 15.8 16.3
ccl (gec) 2.8.0» 2.8.1 831626| 847457 101.9 76313 9.2 9.0
rcc (Icc) 3.2— 3.6 157685| 99017 62.8] 22019 14.0 22.2
rcc (Icc) 4.0— 4.1 237033 645 0.3 303 0.1 47.0
apache 1.2.4» 1.3.0 200413| 201470 100.5/ 253300 126.4 125.7
apache 1.3.6+ 1.3.1 201529| 119585 59.3] 42038 20.9 35.2

Table 1: Experimental results for Set 1

6 Experimental Results

6.1 Setl

We ran 20 experiments on pairs of executables for 12 distinct programs.reBults are shown in Table 1. We
compared the gzipped deltas produced by our techniques with the size afpghedjupgrades and the gzipped deltas
produced by bindiff.

The first four experiments were simple checks on behavior when thiealrfgpurce and upgrade source were identical
or almost identical. In the first experiment, the original and upgradewgables were identical. In the second, only
the compiler optimization level was changed to create the second executalble third, the compiler was forced to
change the register allocation for the upgrade executable. In the fawihglepr i nt f statement was added to the
source.

The remaining 16 experiments tested different versions of executabldsefeame program; the specific programs
and versions are listed in the table. In every experiment except onezthefshe gzipped delta file produced by our
technigues was substantially smaller than both the gzipped upgrade agzifgped delta produced by bindiff. For
upgrades that affected only the minor version number of a program weatiypobserved a fivefold reduction in the
delta size (compared to bindiff), otherwise we observed a twofoldatemtu The one exception was apache versions
1.2.4 and 1.3.0, for which the gzipped delta produced by our technicae26%6 larger than the gzipped upgrade; the
gzipped delta produced by bindiff was just slightly (0.5%) larger tt@ngzipped upgrade. In examining the source
files, we observed that the source files had been extensively reorganizedigfidaeapache versions 1.3.0and 1.3.1,
our techniques did produce substantial improvement.

6.2 Set?2

We ran experiments with four versions (V290,V320,V321,V332)@$s, a pager for text files. The sizes in bytes of
the gzipped executable and the gzipped source for the different verseosisawn in Table 2

Programs src.diff.gz | delta.gz

V290 — V320 28418| 21955
Program| program.gz| src.gz V290 — V321 28425 21971
V290 43416| 107817 V290 — V332 38179| 28395
V320 47470| 122318 V320 — V321 254 163
V321 47473| 122328 V320 — V332 15518 | 14711
V334 49635| 130563 V321 — V332 15477| 14717

Table 2: Characteristics of differehess versions Table 3: Experimental results for Set 2

In Table 3 we compare each version with all newer versions. We compareahia siytes of the gzipped delta for the
source code (determined usidgf f - n) with the gzipped delta produced by Exediff.

The delta of the executables code compares favorably with the diff afahece code especially since we only con-
sidered true source code and excluded makefiles and configuration scripts.

7 Conclusions

We have shown that our techniques can produce deltas for old and newnges§iexecutables that are significantly
smaller than the compressed new version, and also significantly smallehthdelta files produced by bindiff. We
can even compete with source code patches when the changes are not too drargatierdh source code patches
will tend to be smaller than executables patches, but for most applicatigpecially for small devices, compiling at
the end user level is not feasible. Most software companies are also relioctatgase source code. Our techniques
could make a significant difference in how patches are distributed. Wegéaateind our techniques to other plattforms
in particular java class files.

References

[1] Kris Coppieters. A cross-platform binary difbr. Dobb’s Journa) May 1995.
[2] Digital Equipment CorpObject File / Symbol Table Format Specificati@igital Unix, July 1998.

[3] Jens Ernst, William Evans, Christopher W. Fraser, Steven LuccoJadd A. Proebsting. Code compression.
ACM SIGPLAN Notices32(5):358-365, May 1997.

[4] D.S. Hirschberg. Algorithms for the longest common subsequpratdem.J. ACM pages 664—675, Oct. 1977.

[5] J.W. Hunt and T.G. Szymanski. A fast algorithm for computinggest common subsequencégsomm. ACM
20(5):350-353, 1977.

[6] Webb Miller and Eugene W. Myers. A file comparison progr&uftware, Practice, and Experiendg(11):1025—
1040, 1985.

[7]1 Eugene W. Myers. An O(ND) difference algorithm and its variatiofigiorithmicg 1:251-266, 1986.
[8] PocketSoft. .RTPatch Professional, Feb. 23, 1988.p: / / ww. pocket sof t . com products. ht i .

[9] Walter F. Tichy. The string-to-string correction problem wittodk moves. ACM Trans. on Comput. Syst.
2(4):309-321, 1984.

10

