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Abstract. Optimizing compilers typically limit the scope of their anal-

yses and optimizations to individual modules. This has two drawbacks:

�rst, library code cannot be optimized together with their callers, which

implies that reusing code through libraries incurs a penalty; and sec-

ond, the results of analysis and optimization cannot be propagated from

an application module written in one language to a module written in

another. A possible solution is to carry out (additional) program opti-

mization at link time. This paper describes our experiences with such op-

timization using two di�erent optimizing Scheme compilers, and several

benchmark programs, via alto, a link-time optimizer we have developed

for the DEC Alpha architecture. Experiments indicate that signi�cant

performance improvements are possible via link-time optimization even

when the input programs have already been subjected to high levels of

compile-time optimization.

1 Introduction

The traditional model of compilation usually limits the scope of analysis and

optimization to individual procedures, or possibly to modules. This model for

code optimization does not take things as far as they could be taken, in two

respects. The �rst is that code involving calls to library routines, or to functions

de�ned in separately compiled modules, cannot be e�ectively optimized; this

is unfortunate, because one expects programmers to rely more and more on

code reuse through libraries as the complexity of software systems grows, (there

has been some work recently on cross-module code optimization [4, 13]: this

works for separately compiled user modules but not for libraries). The second

problem is that a compiler can only analyze and optimize code written in the

language it is designed to compile. Consider an application that investigates the

synthesis of chemical compounds using a top-level Scheme program to direct a

heuristic search of a space of various reaction sequences, and Fortran routines to

compute reaction rates and yields for individual reactions.
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With the traditional

compiler model, analyses and optimizations will not be able to cross the barrier
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between program modules written in di�erent languages. For example, it seems

unlikely that current compiler technology would allow Fortran routines in such

an application to be inlined into the Scheme code, or allow context information

to be propagated across language boundaries during interprocedural analysis of

a Scheme function calling a Fortran routine.

A possible solution is to carry out program optimization when the entire

program|library calls and all|is available for inspection: that is, at link time.

While this makes it possible to address the shortcomings of the traditional com-

pilation model, it gives rise to its own problems, for example:

{ Machine code usually has much less semantic information than source code,

which makes it much more di�cult to discover control 
ow or data 
ow infor-

mation (as an example, even for simple �rst-order programs, determining the

extent of a jump table in an executable �le, and hence the possible targets

of the code derived from a case or switch statement, can be di�cult when

dealing with executables; at the source level, by contrast, the corresponding

problem is straightforward).

{ Compiler analyses are typically carried out on representations of source pro-

grams in terms of source language constructs, disregarding \nasty" features

such as pointer arithmetic and out-of-bounds array accesses. At the level

of executable code, on the other hand, all we have are the nasty features.

Nontrivial pointer arithmetic is ubiquitous, both for ordinary address com-

putations and for manipulating tagged pointers. If the number of arguments

to a function is large enough, some of the arguments may have to be passed

on the stack. In such a case, the arguments passed on the stack will typically

reside at the top of the caller's stack frame, and the callee will \reach into"

the caller's frame to access them: this is nothing but an out-of-bounds array

reference.

{ Executable programs tend to be signi�cantly larger than the source programs

they were derived from (e.g., see Figure 2). Coupled with the lack of semantic

information present in these programs, this means that sophisticated analy-

ses that are practical at the source level may be overly expensive at the level

of executable code because of exorbitant time or space requirements.

This paper describes our experiences with such optimization on a number of

Scheme benchmark programs, using a link-time optimizer, called alto (\a link-

time optimizer"), that we have built for the DEC Alpha architecture. Apart from

a variety of more or less \conventional" optimizations, alto implements several

optimizations, or variations on optimizations, that are geared speci�cally towards

programs that are rich in function calls|in particular, recursion|and indirect

jumps (resulting both from higher order constructs and tail call optimization).

Experiments indicate that signi�cant performance improvements are possible

using link-time optimization, even for code generated using powerful optimizing

compilers.



2 Scheme vs. C: Low Level Execution Characteristics

Programs in languages such as Scheme di�er in many respects from those written

in imperative languages such as C, e.g., in their use of higher order functions and

recursion, control 
ow optimizations such as tail call optimization, and in their

relatively high frequency of function calls. However, it is not a priori clear that,

at the level of executable code, the dynamic characteristics of Scheme programs

are still signi�cantly di�erent from C code. To this end, we examined the runtime

distributions of di�erent classes of operations for a number of Scheme programs

(those considered in Section 7) and compared the results with the corresponding

�gures for the eight SPEC-95 integer benchmark programs. The results, shown

in Figure 1, show some interesting contrasts:

{ The proportion of memory operations in Scheme code is 2.5 times larger

than that in C code; we believe that this is due to a combination of two

factors: the use of dynamic data structures such as lists that are harder to

keep in registers, and the presence of garbage collection.

{ The proportion of conditional branches is signi�cantly higher (by a factor of

almost 1.8) in Scheme code than in C code. This is due at least in part to

runtime dispatch operations on tag bits encoding type information.

{ The proportion of indirect jumps in Scheme code is close to three times

as high as that in C code. This is due, in great part, to the way tail call

optimization is handled.

{ The proportion of (direct and indirect) function calls is somewhat smaller in

the Scheme programs than in the C code. To a great extent, this is because

the Scheme compilers try hard to eliminate function calls wherever possible.

Code generated for programs in dynamically typed languages usually also car-

ries out pointer arithmetic to manipulate tagged pointers. We didn't measure

the proportion of instructions devoted to tag manipulation (there didn't seem

to be a simple and reliable way to do this in the context of our implementa-

tion), but we note that Steenkiste's studies indicate that Lisp programs spend

between 11% and 24% of their time on tag checking [17]. We expect that the

overall conclusion|that programs spend a signi�cant amount of time in tag

manipulation|holds for Scheme programs as well.

Most of the prior work on link-time optimization has focused on imperative

languages [7, 12, 15, 16, 19]. The di�erences in runtime characteristics between

Scheme and C programs, as discussed above, can have a signi�cant e�ect on

the extent to which systems designed for executables resulting from (human-

written) C programs will be e�ective on code generated from Scheme programs.

The reasons for this are the following:

1. The pointer arithmetic resulting from tag manipulation tends to defeat most

alias analysis algorithms developed for languages such as C (see, for example,

[20]).



Operation Scheme (%) C (%) Scheme/C

integer ops 44.81 35.70 1.25

memory ops 34.02 13.63 2.50


oating point ops 0.58 0.76 0.76

conditional branches 10.44 5.89 1.77

indirect jumps 2.89 0.99 2.92

direct calls 0.29 0.44 0.66

indirect calls 1.51 1.72 0.88

Fig. 1. Dynamic distributions for classes of common operations

2. The higher proportion of memory operations in Scheme programs can in-

hibit optimizations because, in the absence of accurate alias information,

they greatly limit the optimizer's ability to move code around. The prob-

lem is compounded by the fact that pointer arithmetic resulting from tag

manipulation adversely a�ects the quality of alias information available.

3. The higher proportion of indirect branches in Scheme code can interfere

with low-level control 
ow analysis and inhibit optimizations such as pro�le-

directed code layout to improve instruction cache utilization [11].

Our experiments, described in Section 7, show that alto is able to achieve sig-

ni�cant speed improvements, even for Scheme programs that have been heavily

optimized at compile-time; in this regard it consistently outperforms the OM

link-time optimizer [15] from DEC.

3 System Organization

The execution of alto can be divided into �ve phases. In the �rst phase, an

executable �le (containing relocation information for its objects) is read in, and

an initial, somewhat conservative, inter-procedural control 
ow graph is con-

structed. In the second phase, a suite of analyses and optimizations is then ap-

plied iteratively to the program. The activities during this phase can be broadly

divided into three categories:

Simpli�cation : Program code is simpli�ed in three ways: dead and unreach-

able code is eliminated; operations are normalized, so that di�erent ways

of expressing the same operation (e.g., clearing a register) are rewritten,

where possible, to use the same operation; and no-ops, typically inserted for

scheduling and alignment purposes, are eliminated to reduce clutter.

Analysis : A number of analyses are carried out during this phase, including

register liveness analysis, constant propagation, and jump table analysis.

Optimization : Optimizations carried out during this phase include standard

compiler optimizations such as peephole optimization, branch forwarding,



copy propagation, and invariant code motion out of loops; machine-level op-

timizations such as elimination of unnecessary register saves and restores at

function call boundaries; architecture-speci�c optimizations such as the use

of conditional move instructions to simplify control 
ow; as well as improve-

ments to the control 
ow graph based on the results of jump table analysis.

This is followed by a function inlining phase. The fourth phase repeats the op-

timizations carried out in the second phase to the code resulting from inlining.

Finally, the �nal phase carries out pro�le-directed code layout [11], instruction

scheduling, and insertion of no-ops for alignment purposes, after which the code

is written out.

4 Control Flow Analysis

Traditional compilers generally construct control 
ow graphs for individual func-

tions, based on some intermediate representation of the program. The determi-

nation of intra-procedural control 
ow is not too di�cult; and since an interme-

diate representation is used, there is no need to deal with machine-level idioms

for control transfer. As a result, the construction of a control 
ow graph is a

fairly straightforward process [1]. Matters are somewhat more complex at link

time because machine code is harder to decompile. The algorithm used by alto

to construct a control 
ow graph for an input program is as follows:

1. The start address of the program appears at a �xed location within the

header of the �le (this location may be di�erent for di�erent �le formats).

Using this as a starting point, the \standard" algorithm [1] is used to identify

leaders and basic blocks, as well as function entry blocks. At this stage alto

makes two assumptions: (i) that each function has a single entry block; and

(ii) that all of the basic blocks of a function are laid out contiguously. If

the �rst assumption turns out to be incorrect, the 
ow graph is \repaired"

at a later stage; if the second assumption does not hold, the control 
ow

graph constructed by alto may contain (safe) imprecisions, and as a result

its optimizations may not be as e�ective as they could have been.

2. Edges are added to the 
ow graph. Whenever an exact determination of the

target of a control transfer is not possible, alto estimates the set of possible

targets conservatively, using a special node B

unknown

and a special function

F

unknown

that are associated with the worst case data 
ow assumptions (i.e.,

that they use all registers, de�ne all registers, etc.). Any basic block whose

start address is marked as relocatable is considered to be a potential tar-

get for a jump instruction with unresolved target, and has an edge to it

from B

unknown

; any function whose entry point is marked as relocatable is

considered to be potentially a target of an indirect function call, and has

a call edge to it from F

unknown

. Any indirect function call (i.e., using the

jsr instruction) is considered to call F

unknown

while other indirect jumps

are considered to jump to B

unknown

.

3. Inter-procedural constant propagation is carried out on the resulting control


ow graph, and the results used to determine addresses being loaded into



registers. This information, in turn, is used to resolve the targets of indirect

jumps and function calls: where such targets can be resolved unambiguously,

the edge to F

unknown

or B

unknown

is replaced by an edge to the appropriate

target.

4. The assumption thus far has been that a function call returns to its caller,

at the instruction immediately after the call instruction. At the level of

executable code, this assumption can be violated in two ways. The �rst in-

volves escaping branches, i.e., ordinary (i.e., non-function-call) jumps from

one function into another: this can happen either because of tail call opti-

mization, or because of code sharing in hand-written assembly code that is

found in, for example, some numerical libraries. The second involves non-

local control transfers via functions such as setjmp and longjmp. Each of

these cases is handled by the insertion of additional control 
ow edges, which

we call compensation edges, into the control 
ow graph: in the former case,

escaping edges from a function f to a function g result in a single compen-

sation edge from the exit node of g to the exit node of f ; in the latter case,

a function containing a setjmp has an edge from F

unknown

to its exit node,

while a function containing a longjmp has a compensation edge from its

exit node to F

unknown

. The e�ect of these compensation edges is to force the

various data
ow analyses to safely approximate the control 
ow e�ects of

these constructs.

5. Finally, alto attempts to identify indirect jumps through jump tables, which

arise from case or switch statements. This is done as part of the optimiza-

tions mentioned at the beginning of this section. These optimizations can

simplify the control and/or data 
ow enough to allow the extent of the jump

table to be determined. When this happens, the edge from the indirect jump

to B

unknown

is replaced by a set of edges, one for each entry in the jump

table. If all of the indirect jumps within a function can be resolved in this

way, then any remaining edges from B

unknown

to basic blocks within that

function are deleted.

5 Data Flow Analysis

Alto carries out a variety of inter-procedural data 
ow analyses, including reach-

ability analysis, constant propagation, register liveness analysis, side e�ect anal-

ysis, etc. The most important of these is inter-procedural constant propagation,

which plays a central role in the construction of the control 
ow graph of the

program. A discussion of these analyses is omitted due to space constraints, ex-

cept for the observation that we �nd that for Scheme programs, alto is able

to determine, on the average, the operands and results for about 29% of the

instructions in programs. This is considerably higher than for C and Fortran

programs: e.g., for the programs in the SPEC-95 benchmark suite, it is able to

evaluate about 17% of the instructions on the average: we are currently looking

into the reason for this di�erence. Note that this does not mean that a third

of the instructions of a program can be removed by alto, since in most cases



the these represent address computations. This information can, nevertheless, be

used to good advantage elsewhere, as discussed above: experiments indicate that

for the Scheme benchmarks considered, disabling constant propagation leads to

a performance loss of 5%{12% (compared to when all analyses and optimizations

are enabled).

6 Program Optimization

The optimizations carried out by alto are typically guided by execution pro�le

information and the availability of machine resources. Space constraints pre-

clude a detailed discussion of these optimizations: here we discuss only the most

important ones.

6.1 Inlining

Traditionally, Scheme compilers carry out inlining at, or close to, the level of

the source program [2, 4, 10, 18]. At this level, the primary bene�ts of inlining

come from specializing and simplifying the inlined function, e.g., by evaluating

conditionals and pruning away code that becomes unreachable. Code growth

during inlining is usually controlled via syntax-driven techniques, ranging from

simple syntax-directed estimates of the size of the callee [2, 4, 10] to more re�ned

estimates based on the residual size of the callee after specializing it to the

call site under consideration [18]. At link time, by contrast, it is reasonable to

expect that considerable amounts of inlining have already been carried out by the

Scheme compiler being used (and then possibly some more by the C compiler,

if the compilation is via translation to C). This means that, while some code

simpli�cation might occur due to the propagation of constant arguments into

library routines, it seems unlikely that link-time inlining will give rise to large

amounts of code simpli�cation and pruning. On the other hand, more accurate

information is available about object code size, making it easier to consider the

e�ects of inlining on the instruction cache utilization of a program.

The motivations for carrying out inliningwithin alto are three-fold: to reduce

the function call/return overhead; to simplify reasoning about aliasing between

the caller's code and the callee's code, since after inlining they typically refer to

the same stack frame rather than two di�erent frames (see Section 6.2); and to

improve branch prediction and instruction cache behavior using pro�le-directed

code layout [11]. In alto, code growth due to inlining is controlled by ensuring

that (alto's estimate of) the cache footprint of the resulting code does not exceed

the size of the instruction cache: in particular, if the call site being considered for

inlining lies within any loop, the total size of the \hot" execution paths through

the loop is not allowed to exceed the size of the primary instruction cache.

Inlining in the presence of higher order functions has typically been accom-

plished using sophisticated control 
ow analyses [10]. We believe that such anal-

yses are too expensive to be practical at the level of machine code. Instead, we

use a simple pro�le-guided inlining technique we call guarded inlining|which

is conceptually similar to, though somewhat more general than, a technique for

optimizing dynamically dispatched function calls in object-oriented languages



referred to as \receiver class prediction" [5, 8]|to achieve similar results. Sup-

pose we have an indirect function call whose target we are unable to resolve.

We use pro�ling to identify the most frequent targets at each such indirect call.

Suppose that the most frequent target is a function f at address addr

0

. With

guarded inlining, we test whether the target address is addr

0

: if this is the case,

execution drops through into the inlined code for f ; otherwise, an indirect func-

tion call occurs, as before. It's not too di�cult to see, in fact, that in general the

transformation can be adapted to any indirect branch. This mechanism allows

us to get the bene�ts of inlining even for call sites that can, in fact, have multi-

ple possible targets, in contrast to schemes that require control 
ow analysis to

identify a unique target for a call site before inlining can take place [10].

6.2 Memory Access Optimizations

We use an intra-basic-block transformation we call register forwarding to re-

duce the number of unnecessary loads from memory. The opportunity for this

optimization arises because, in the course of other optimizations such as the

elimination of unreachable code, register reassignment and elimination of un-

necessary register saves and restores at function boundaries, etc., alto is able to

free up registers that can then be reused for other purposes. In the simplest case,

a register r

a

is stored to a memory location addr

0

, and a register r

b

subsequently

loaded from that address, with no rede�nition of r

a

in between. In this case, as-

suming that we can verify that the contents of location addr

0

have also not been

modi�ed, register forwarding replaces the load operation by a register-to-register

move from r

a

:

store r

a

, addr

0

store r

a

, addr

0

. . . ) . . .

load r

b

, addr

0

move r

a

, r

b

In general, register r

a

may be modi�ed after it has been stored to location

addr

0

but before r

b

is loaded from that location. In this case (again assuming

that location addr

0

can be guaranteed to not have been modi�ed), if there is

a free register r

tmp

, it can be used to save the original value of r

a

before r

a

is

modi�ed, and eventually moved over to r

b

.

In order to guarantee that the memory location addr

0

is not modi�ed be-

tween the initial store of r

a

to it and the subsequent load into r

b

, we verify

that any intervening stores to memory write to locations other than addr

0

. For

this, we use a slight generalization of a technique called instruction inspection,

commonly used in compile-time instruction schedulers. we �rst carry out inter-

procedural constant propagation to identify references to global addresses. The

memory disambiguation analysis then proceeds as follows: two memory reference

instructions i

1

and i

2

in a basic block can be guaranteed to not refer to the same

memory location if one of the following holds:

1. one of the instructions uses a register known to point to the stack and the

other uses a register known to point to a global address; or



Program Source Bigloo Gambit-C

lines functions blocks instructions functions blocks instructions

boyer 568 2061 24358 114007 1050 39004 188178

conform 432 2080 24689 115809 1036 39388 190257

dynamic 2318 2202 27633 132576 1050 43716 220461

earley 651 2069 24608 115928 1050 39319 191091

graphs 602 2079 24538 115885 1050 39200 189977

lattice 219 2061 24331 113994 1050 39016 188451

matrix 763 2091 24746 116729 1050 39734 192569

nucleic 3478 2162 27131 126612 1050 40257 199192

scheme 1078 2301 26333 123465 1050 41479 202127

Fig. 2. The benchmark programs used

2. i

1

and i

2

use address expressions k

1

(r

1

) and k

2

(r

2

) respectively, and there are

two (possibly empty) chains of instructions whose e�ects are to compute the

value c

1

+ contents of (r

0

) into register r

1

and c

2

+ contents of (r

0

) into r

2

,

for some register r

0

, such that the two chains do not use di�erent de�nitions

of r

0

in the basic block under consideration, and c

1

+ k

1

6= c

2

+ k

2

.

Apart from this transformation, shrink-wrapping [6] is used to reduce register

save/restore operations at function call boundaries.

6.3 Pro�le-Directed Code Layout

In order to reduce the performance penalty associated with control 
ow changes

and instruction cache misses, alto uses pro�le information to direct the layout

of the code (modern processors typically use dynamic branch prediction, so the

e�ect of code layout on branch misprediction is not considered). The algorithm

used here follows that of Pettis and Hansen [11], with a few minor modi�cations.

The code layout algorithm proceeds by grouping the basic blocks in a program

into three sets: The hot set consists of the set of basic blocks, considered in de-

creasing order of execution frequency, which account for 2/3 of the total number

of instructions executed by the program at runtime; the zero set contains all the

basic blocks that were never executed; and The cold set contains the remaining

basic blocks. We then compute the layout separately for each set using a greedy

algorithm to construct chains of basic blocks, and concatenate the three resulting

layouts to obtain the overall program layout.

7 Experimental Results

We evaluated our link-time optimizer using two optimizing Scheme compilers:

Bigloo version 1.8, by M. Serrano [14], and Gambit-C version 3.0 by Marc Fee-

ley. Our experiments were run using nine commonly used Scheme benchmarks:

boyer, a term-rewriting theorem prover; conform is a type checker, written by

J. Miller; dynamic is an implementation of a tagging optimization algorithm for

Scheme [9], applied to itself; earley is an implementation of Earley's parsing al-

gorithm, by Marc Feeley; graphs, a program that counts the number of directed
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graphs with a distinguished root and k vertices each having out-degree at most 2;

lattice enumerates the lattice of maps between two lattices; matrix tests whether

a given random matrix is maximal among all matrices of the same dimension

obtainable via a set of simple transformations of the original matrix; nucleic is a


oating-point intensive program to determine nucleic acid structure; and scheme

is a Scheme interpreter by Marc Feeley. The size of each of these benchmarks

is reported in Figure 2.

2

We considered only compiled systems, and restricted

ourselves to compilers that translated Scheme programs to C code because alto

requires relocation information to reconstruct the control 
ow graph from an

executable program, which means that the linker needs to be invoked with the

appropriate 
ags that instruct it to not discard the relocation information; sys-

tems that compiled to C seemed to o�er the simplest way to communicate the

appropriate 
ags to the linker.

The Bigloo compiler was invoked with options -O4 -farithmetic -unsafe

-cgen, except for the nucleic program, for which the options used were -O3

-unsafesv -cgen. The Gambit-C compiler was invoked without any additional

compiler options, but the resulting C code had the switch -D___SINGLE_HOST

passed to the C compiler to generate faster code The resulting C code was com-

piled with the DEC C compiler V5.2-036 (the highly optimizing GEM compiler

system [3], which we found generates faster code than current versions of gcc)

invoked as cc -O4, with additional 
ags to retain relocation information and

produce statically linked executables. The pro�ling inputs used were the same

as that used for the actual benchmarking. The timings were obtained on a lightly

2

The numbers reported here are for the programs availablewith the Gambit-C 2.7 distribution

(http://www.iro.umontreal.ca/~gambit), measured for the \core program", i.e., without

system-speci�c de�nitions, using the wc utility. Of course, \lines of code" is not really an

appropriate measure of size for link-time optimization, and these numbers are shown only

to provide some intuition: a more appropriate measure, for our purposes, is the number of

instructions in the �nal executable, as reported in this table.
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loaded DEC Alpha workstation with a 300 MHz Alpha 21164 processor with a

split primary cache (8 Kbytes each of instruction and data cache), 96 Kbytes

of on-chip secondary cache, 2 Mbytes of o�-chip backup cache, and 512 Mbytes

of main memory, running Digital Unix 4.0. In each case, the smallest time of

15 runs is considered. Measurements of the number of di�erent kinds of opera-

tions executed, cache misses, etc., were obtained using hardware counters on the

processor, using the best number out of 5 runs.

Figure 3 shows the execution time improvements due to alto, compared

to what is achievable otherwise using aggressive compile-time optimization (at

level -O4), together with pro�le-guided and inter-�le optimization as well as link-

time optimization using the Om link-time optimizer [15]. There are two main

points to note from this �gure. First, note that in almost all cases|the sole

exception is conform under Gambit-C|alto produces code that is signi�cantly

faster than that produced using Om. The second point is that, even though the

programs were subjected to a high degree of optimization by both the Scheme

and the C compilers, alto nevertheless succeeds in achieving signi�cant further

improvements in performance. The improvements for Bigloo range from about

10% to over 30%, with an average improvement of 19.3%. The improvements are

smaller for Gambit-C, ranging from about 6% to about 15.5%, with an average

improvement of about 10.2%.

3

Figure 1 indicates that for the programs considered, there are three main

classes of operations executed: memory operations, integer operations, and branch

operations. Figure 4 shows the e�ect of alto on the number of memory and in-

teger operations executed; while alto is able, in some cases, to reduce number of

branch operations executed, the reductions are generally not large enough to be

signi�cant. It can be seen that for Gambit-C, alto is able to e�ect a reduction

3

These averages were computed as follows: for each of the systems considered, we deter-

mined the ratio of the execution times after optimization to the original execution time (i.e.,

Opt./Orig. in Table 3), computed the geometric mean, and subtracted this from 1.00.



Original Optimized

Program Accesses Misses Miss Rate Accesses Misses Miss Rate �Accesses

(�10

6

) (�10

6

) (%) (�10

6

) (�10

6

) (%) (%)

boyer 1252.26 1.27 0.10 907.34 0.58 0.06 27.54

conform 453.70 10.10 2.22 398.00 1.19 0.30 12.27

dynamic 395.96 6.43 1.62 338.82 2.14 0.63 14.43

earley 974.06 2.68 0.27 920.58 0.78 0.08 5.49

graphs 1495.59 32.62 2.18 1320.81 6.02 0.45 11.68

lattice 2491.41 3.85 0.15 2443.31 1.55 0.06 1.93

matrix 2637.69 23.64 0.89 2262.69 11.46 0.50 14.21

nucleic 1793.26 164.36 9.16 1447.69 30.37 2.09 19.27

scheme 2767.45 30.47 1.10 2216.75 7.15 0.32 19.89

(a) Bigloo

Original Optimized

Program Accesses Misses Miss Rate Accesses Misses Miss Rate �Accesses

(�10

6

) (�10

6

) (%) (�10

6

) (�10

6

) (%) (%)

boyer 1230.11 9.78 0.79 1084.09 1.06 0.09 11.87

conform 913.96 27.24 2.98 866.91 16.95 1.95 5.14

dynamic 1735.13 42.31 2.43 1518.46 14.46 0.95 12.48

earley 1274.87 23.57 1.84 1185.54 0.96 0.08 7.00

graphs 433.58 21.51 4.96 432.86 3.91 0.90 0.16

lattice 2976.57 77.80 2.61 2729.05 1.93 0.07 8.31

matrix 2470.24 71.63 2.89 2213.54 28.21 1.27 10.39

nucleic 377.09 14.76 3.91 358.74 7.97 2.22 4.86

scheme 3126.19 318.07 10.17 3413.83 17.90 0.52 {9.20

(b) Gambit

Table 1. Instruction Cache behavior

of around 4% in the number of memory operations and 5{10% in the number

of integer operations; for Bigloo the improvements are more dramatic, with 5{

10% reductions in the number of memory operations and 15{25% reductions in

the number of integer operations executed. The vast majority of the memory

operations eliminated turn out to be load operations, which are typically more

expensive than store operations.

Table 1 shows the e�ect of alto on the instruction cache behavior of the pro-

grams. The group of columns marked `Original' refers to the original program,

while those grouped under `Optimized' refer to the output of alto; the column

marked `� Accesses' refers to the percentage improvement in the number of

i-cache accesses from the original to the optimized program, relative to the orig-

inal program. We see, from the �Accesses column, that the number of i-cache

accesses, i.e., the number of instruction accesses, generally decreases after opti-

mization: the sole exception is the scheme benchmark under Gambit-C, which

experiences an increase of over 9% in the number of i-cache accesses. We are

currently investigating the reason for this anomaly. In all cases, however, both

the number of i-cache misses, and the i-cache miss rate, decrease dramatically,



Original Optimized

Program Accesses Misses Miss Rate Accesses Misses Miss Rate �Accesses

(�10

6

) (�10

6

) (%) (�10

6

) (�10

6

) (%) (%)

boyer 578.28 49.90 8.00 515.76 47.92 9.00 10.81

conform 284.95 18.35 6.00 257.55 21.28 8.00 9.61

dynamic 207.61 26.06 12.00 186.84 25.01 13.00 10.00

earley 649.46 59.11 9.00 605.88 57.47 9.00 6.71

graphs 730.72 128.23 17.00 670.17 96.32 14.00 8.28

lattice 1844.44 46.35 2.00 1671.10 92.60 5.00 9.39

matrix 1463.61 154.46 10.00 1358.69 146.29 10.00 7.16

nucleic 1105.26 79.70 7.00 1051.39 73.54 6.00 4.87

scheme 1331.42 167.60 12.00 1275.19 162.43 12.00 4.22

(a) Bigloo

Original Optimized

Program Accesses Misses Miss Rate Accesses Misses Miss Rate �Accesses

(�10

6

) (�10

6

) (%) (�10

6

) (�10

6

) (%) (%)

boyer 728.49 108.08 14.00 700.84 100.10 14.00 3.79

conform 574.35 38.73 6.00 572.06 37.73 6.00 0.39

dynamic 1301.02 101.28 7.00 1237.12 82.82 6.00 4.91

earley 1105.85 50.79 4.00 1061.87 50.23 4.00 3.97

graphs 422.90 20.85 4.00 415.82 20.79 5.00 1.67

lattice 2165.83 76.89 3.00 1979.51 64.55 3.00 8.60

matrix 1816.00 131.53 7.00 1725.56 118.03 6.00 4.98

nucleic 301.20 43.53 14.00 284.68 47.74 16.00 5.48

scheme 2077.62 306.80 14.00 2072.70 302.66 14.00 0.23

(b) Gambit

Table 2. Data Cache behavior

primarily due to pro�le-guided code layout.

Table 2 shows the e�ect of alto on the data cache behavior of programs

tested. While alto does not do anything to change data layouts, it can be seen

that for most programs there are noticeable reductions in the number of data

cache accesses: we believe that this is likely to be due to the elimination of load

operations by alto. Surprisingly, in a few programs the reduction in data cache

accesses is accompanied by an increase in data cache misses: we conjecture that

this may be because some load operations, which would have caused nearby

memory words to be brought into the cache, were eliminated by alto, and that

this resulted in cache misses when those nearby words were accessed.

The amount of code growth due to inlining ranges from about 0.5% for

the Gambit-C system, where very little inlining takes place, to about 1.5% for

Bigloo. For either implementation, the amount of inlining does not seem to vary

signi�cantly for the di�erent benchmarks, suggesting that most of the inlining

involves library routines; this is not surprising, since the programs used were

single-module programs and one would expect the Scheme and C compilers to

have inlined most of the obvious candidates at compile time.



We believe that the performance improvements reported here are conserva-

tive, because the benchmarks used don't really have the characteristics where

link-time optimization can be expected to pay o� signi�cantly. Each benchmark

consists of a single �le; the use of libraries is limited to system primitives (i.e.,

there is very little code reuse at the user level); and the programs don't use

more than one language. In the near future we intend to investigate larger, more

realistic, multi-module benchmarks: we believe link-time optimization will o�er

even greater bene�ts for such applications.

8 Conclusions

The traditional model of compilation is unable to optimize code that is not avail-

able for inspection at compile time. This means that applications that make ex-

tensive use of library routines, or where di�erent modules are written in di�erent

languages, may incur a performance penalty. One way to address this problem

is to apply low level code optimizations at link time. However, the manipulation

of machine code has challenges of its own, including increased program size and

di�culty in extracting information about program behavior.

This paper describes alto, a link-time optimizer we have developed for the

DEC Alpha architecture, and our experiences with its application to several

Scheme benchmarks, using code generated by three di�erent optimizing Scheme

compilers. Even though the benchmarks lack the features that would show o�

the bene�ts of link-time optimization, and were compiled with high levels of

compiler optimization (both at the Scheme and C level), we �nd that alto is

able to achieve signi�cant performance improvements.
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