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Abstract. It is often the case at runtime that variables and registensro-
grams are “quasi-invariant,” i.e., the distribution of tlaues they take on is very
skewed, with a small number of values occurring most of threetiKnowledge
of such frequently occurring values can be exploited by agtanto generate
code that optimizes for the common cases without sacrifittiecability to han-
dle the general case. The idea can be generalized to thennaitiexpression
profiles which profile the runtime values of arbitrary expressiond aan per-
mit optimizations that may not be possible using simple @grtofiles. Since this
involves the introduction of runtime tests, a careful dostefit analysis is nec-
essary to make sure that the benefits from executing the pedéatized for the
common values outweigh the cost of testing for these vall@s.paper describes
a static cost-benefit analysis that allows us to discovemvgueh specialization
is profitable. Experimental results, using such an analysisan implementation
of low-level code specialization based on value and expmeswzofiles within a
link-time code optimizer, are given to validate our apptoac

1 Introduction

Knowledge that an expression in a program can be guaranteedatuate to some
particular constant at compile time can be profitably expbbiby compilers via the
optimization known as constant folding [17]. This is an “aitnothing” transformation,
however, in the sense that unless the compiler is able tcagtes that the expression
under consideration evaluates to a compile-time condtamtransformation cannot be
applied. A similar situation holds in partial evaluatioheve a variable has to be static
in order to permit specialization [15]. In practice, it ideri the case that an expression at
a point in a program “almost always” takes on a particulau@gb]. As an example, in
the SPEC-95 benchmaplerl, the functiormemmovés called close to 24 million times.
The argument giving the size of the memory region to be pgerkhas the value 1 in
70% of these calls. We can take advantage of this fact totdiveh calls to an optimized
version of the function that is significantly simpler andéxsAs another example, in the
SPEC-95 benchmaitk a very frequently called functioffiyecar, contains awi t ch
statement where one of the case labels, corresponding typbé.| ST, occurs over
80% of the time. Knowledge of this fact allows the code to tstreestured so that this
common case can be tested separately first, and so does motchge through the
jump table, which is relatively expensive. As these exampleggest, if we know that
certain values occur very frequently at certain progranmizpive may be able to take
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advantage of this information to improve the performanceefprogram. Information
about the relative frequency of occurrence is givervbjue profiles a value profile
for a variable or registex at a program poinp is a (partial) probability distribution
on the values taken on bywhen control reachep during program execution. This
idea can be generalized to the notionespression profilesvhich profile the runtime
values of arbitrary expressions and can permit optiminatibat may not be possible
using simple value profiles. Unfortunately, classical cdemgechniques cannot take
advantage of knowledge of the distribution of values, antintipe for the common
case, in situations where a variable may take on multipleesht runtime. The idea
behind value-profile-based code specialization is to aiosh optimization.

From a semantic perspective, the transformation we useysiraple. To specialize
a code fragmert for a valuev of a register,! we simply replac€ by the equivalent
code if (r ==v) thenC elseC.’ Once this has been done, “ordinary” specializing and
optimizing transformations suffice to specialize thge-branch of this conditional to
the valuev of r. The resulting code has the structure

if (r ==v) then (C),_y elseC

where(C),—y represents the residual codedéfter it has been specialized to the value
v of r. The runtime testif (r ==v) ...’ is required since we cannot guarantee that
r will take on only the valuer at that point. This idea can be generalized to multi-
ple values: given a probability distribution on these valuge can use a collection of
tests such as that above, organized as an optimal binamghsgae, to choose between
the specialized versions. For simplicity of discussion fa@is on specialization for a
single value in this paper, since this illustrates the tezdinissues that arise.

Notice that this transformation is obviously semanticssgrving, can be applied
anywhere, to any variable or register and any value (sutjeamy applicable type con-
straints), without requiring, for example, a binding-timealysis. This is the primary
strength of our approach, and it allows optimizations thaitila not be possible other-
wise; it is also our biggest weakness, because we havelsddifjuide us in exercising
the tremendous freedom that we are given. For example ettt due to the runtime
test that has been introduced, the code resulting from algtion, shown above, is
actually less efficient than the original for values other thanv. Thus, value-profile-
based specialization reduces cost of some execution gaththe cost of other paths
increases. If this tradeoff is not assessed carefully,ntregult in significant perfor-
mance degradation. In general, the technical issues tlatthabe addressed during
value-profile-based code specialization are as follows:

1. we have to determine the program p&iptwhere the specialization should begin
(this corresponds to the point where runtime tests on vdlaes to be inserted, as
discussed above);

1n general, specialization can be carried out based on the eda register, variable, or mem-
ory location, or relationships between such values. To kiyrihe discussion, and because our
current implementation carries out specialization baserkgister values, we refer to register
values when discussing specialization.

2 For our purposes a “program point” refers to the points imiatetyy before or after an instruc-
tion; this includes the entry and exit points of basic blocks



2. we have to identify the registemwhose values we are interested in, and the partic-
ular value(s)y of this register that we specialize for;

3. we have to determine the actual code fragn@ztitat is to be subjected to special-
ization.

The primary contribution of this paper is a low-level statimst-benefit analysis that
allows us to evaluate the runtime tradeoff mentioned abowbere specialization can
reduce the runtime cost of some execution paths but inctbaseost of others—and
guide the specialization process. This analysis is crusiate specializing a piece of
code for too many different values, or specializing code netibe benefits of special-
ization are not high enough, can lead to a performance datioad We then describe
details of how the analysis, specialization, and subsedquele optimization have been
automated and integrated into a link-time code optimiaén), and give experimental
results to validate our ideas.

2 Code Specialization

Value-profile-based code specialization is a three-stepgss:

1. identify program points and registers where speciatinanay be profitable using
basic block profiles;

2. obtain value and expression profiles for those programtgoi

3. use these profiles to carry out specialization for thosgam points where this is
deemed profitable

A specialization triplds a triple of the form(p,r,v), wherep is a program point;
is a register, andis a value for that register. These triples identify the imettests that
have to be inserted in the context of value-profile-basediafization and the program
points where they must be inserted. Tpecialization regiorf a triple (p,r,v) refers
to the region of code that is chosen for specialization;itéstifies the code fragments
that appear in théhen- and elsebranches of the runtime test corresponding to that
triple.

Section 2.1 describes a benefit analysis that is fundameralr approach. In Sec-
tions 2.2 through 2.4 we discuss the three steps mentiormeaBection 2.5 provides
an example illustrating our approach.

2.1 Estimating Benefits of Specialization

Our value profiling and specialization decisions are guitieéstimates of the benefit
that would be obtained from code specialization given thekadge that the value of
a registerr is known at a program poirg. This estimate is denoted WBenefit(p,r).
There are two components to the computation of benefits:

(i) For each instructioh that uses the value afavailable atp, there may be some
benefit to knowing this value. The magnitude of this benefit depend on the
type ofl, and is denoted b§avings(l,r).



(ii) 1t may happen that knowing the value of an operand regrste#ran instruction
| allows us to determine the value computedIbyn this case] is said to be
evaluablegiven r, written Evaluable(l,r). If | is evaluable givem, the benefits
obtained from specializing other instructions that usevddae computed by for a
particular value of can also be credited to knowing the value af p. The indirect
benefits so obtained from knowing the valuerdh instructionl are denoted by
IndirBenefit(1,r).

If we know the values of all operands to an instruction, we campute the result
v of the instruction, and propagate this value to all insinng that usevs. There is
therefore no need to execute this instruction at run-tintee 3avings obtained from
knowing the operand values for an individual instructioedsentially the latency of that
instruction (i.e., the number of cycles it takes to exequft&howing the operand values
allows us to determine the value computed by that instroctod thereby eliminate
that instruction entiref(our implementation uses latency figures for various clae$e
operations based on data from the Alpha 21164 hardwarerefermanual):

Savings(l,r) = if Evaluable(l,r) then Latency(l) elseO.

Let Uses(p,r) denote the set of all instructions that use the value of tegisthat is
available at program poirp. Then the benefit of knowing the value of a registet
program pointp is given by the following:

Benefit(p,r) = Z (Freq()* x Savings(l,r) + IndirBenefit(l,r))
1eUses(p,r)
IndirBenefit(l,r) = if Evaluable(l,r) then Benefit(p’,ResultRef) )) else0.

Here p' is the program point immediately aftér and ResultRef] ) the register into
which| computes its result.

These equations for computing benefits propagate infoomdtom the uses of a
register to its definitions. They can be recursive in gene@lresponding to a cycle
in the use-definition chain. The usual approach to solvirgin®ve equations in the
context of program analysis is to use an iterative fixpoimhpatation (e.g., see [9]).
In our case, however, it is not obvious from a pragmatic gtaint that this is the right
thing to do. The reason for this is that propagating bendfirmation around a cycle
is meaningful only if we knowa priori, that the loop will be unrolled later (otherwise
we cannot specialize the loop body for values encounterdiffament iterations of the
loop). When carrying out loop unrolling, however, it is ass& to take into account
machine-level resources such as registers and the instmeeiche: excessive unrolling
that does not consider these factors can result in sevefi@pamnce degradation (e.g.,

3 The benefit estimation can be improved to take into accowenfaitt that for some instructions,
knowing some of the operands of the instruction may allonwoustiength-reduce the instruc-
tion to something cheaper even if its computation cannotlineireted entirely. While our
implementation uses such information in its benefit esiivnatve do not pursue the details
here due to space constraints.

4 Freq(l) refers to the dynamic execution frequency of the instructio



see [11]). For this reason, the decision as to whether the $bould actually be un-
rolled is not made at the time of the cost-benefit computabanlater, based in part on
information obtained from value and expression profilingg(Section 3). If benefit in-
formation is propagated around the loop but the loop sulesstyis not unrolled (e.g.,
due to cache considerations), we can get wildly optimistiedfit values. These values
can mislead the cost-benefit estimation and lead to thedattion of useless runtime
tests, thereby degrading performance.

We therefore have a chicken-and-egg problem: propagatfognation around cy-
cles when identifying candidates for value profiling regaiknowledge of whether or
not loops will be unrolled; but the decision of whether or totinroll a loop depends
upon, among other things, knowledge of value profiles. Asatmal matter, it happens
that complex low-level analyses of machine code prograss(aur implementation)
and determination of value profiles are both quite expenshis greatly limits our
choices in dealing with this circular dependence. The aqgrave take, therefore, is
one where we attempt to “do no harm:” we conservatively asstirat loops will not
be unrolled when carrying out our benefit analysis, and thezado not propagate in-
formation along loop back edges. This has the drawback tltaini sometimes cause
us to underestimate the benefit that might actually have bégined if cycles had
been taken into account; as a result we could miss some ajities for optimization.
Note, however, that this is conservative, in the sense thdliinot insert runtime tests
or specialize code that is not worth specializing.

Our approach, therefore, is to obtain approximate solsttorihe benefit equations
given above, where the approximation occurs in the handiinipops as discussed
above. This is done as follows. First, let tHefining instructionof an instructionl,
written deflnstl), be the (single) instructiod such that knowing the value computed
by J into its destination register allows us to determine thei#aiomputed by; if
there is not a single such instruction, the defining instoucis undefined, denoted by
1.5 Use-definition chains are used to compute the defining icomifor an instruction
| =‘re=radry as follows:

(i) if the values of bothr, andry are statically knowngefinstl) = L;
(ii) otherwise, if the value of one of the operand registers ticsiyy known, and there
is a single definitiod for the other operand register that reachesendefinstl) =
J;
(iii) otherwise, ifry = rp and there is a single definitiahfor r, that reaches, then
definstl) = J;
(iv) otherwisedefinstl) = L.

In case(i), all of the operands of an instructidrare known statically. This instruc-
tion will be specialized without relying on value profilesadit For the purpose of value
profile based specialization, therefore, we do not consdeh instructions. A conve-
nient way to do this is by settindeflnstl) to L. In case(iv), neither of the operands of
an instruction are known statically. We do not wish to praadenefit from casgv)

5 Our implementation introduces, at the entry to each basitkithat has more than one prede-
cessor, a pseudo-instruction, similar to a Sfnction, that defines each register that is live
at that point and has more than one definition reaching it.nidtion of defining instructions
extends to such pseudo-instructions in the obvious way.



instructions since they cannot be evaluated after knowiagalue of a single defining
instruction.

The benefit for each instruction can now be computed as felldwt Benefitl),
wherel is an instruction, denote the valBenefit(p,r), wherep is the program point
immediately aftet andr is the destination register bfFirst, we mark all instructions in
the program aanprocessedind seBenefifl ) = O for each instructioh. The following
is then repeated until no new instruction can be markqat@sessed

for each unprocessed instructibdo
[* memory operations are not specialized away */
if 1 is not a memory operatiahen
J = deflnstl);
if J# L and all instructions dependent bhave been process#tken
BenefifJ) += Benefifl) + Saving$§l,r),
wherer is the destination register df
mark| asprocessed
fi
fi
od

This algorithm will not process any instruction that is itwed in such a cycle, since
Benefifl) is added tdBenefitJ) only after all of the instructions dependent bhave
been processed, i.e., after the valu@ehefitl ) has stabilized. This will cause benefit
information to not be propagated around loops, for the neastiscussed above. An
added benefit of such an approach is that of efficiency: disaily information propa-
gation around cycles makes the code for estimating benifitder and faster.

2.2 ldentifying Candidates for Specialization

In order to reduce the time and space overheads for valudipgadis far as possible,
we attempt to identify candidatprogram pointregistel) pairs for which specialization
could conceivably yield a performance improvement if we haslfficiently skewed
runtime distribution of values. Once the benefits assotiaiéh each instruction have
been computed as described above, we only consider thdsectitsns whose bene-
fit is equivalent to the elimination of at least a single instion from a “hot” basic
block. The intent is to avoid the overheads associated vaillnevprofiling, and perhaps
specializing, instructions where this is unlikely to leadatnoticeable improvement in
performance. Notice that this does not mean that instmstonsidered for specializa-
tion must actually cause the elimination of instructionfat basic blocks, but simply
that the savings incurred from specialization be large ghda be comparable to the
elimination of at least one instruction from a hot block. Haying this cost-benefit
analysis reduces the overhead of profiling significantly.di¢euss this in more detail
in Section 4

Alto uses a two-stage profiling scheme where basic block profidfirat generated,
and these are used to determine which value profiles to camfstithis point, therefore,
we have basic block execution counts. To determine the lidsaks that are “hot,”
i.e., executed sufficiently frequently, we start with a eaduin the interval (0,1] and
determine the largest execution frequency threshioddich that the set of basic blocks



that have execution frequencies exceedihtpgether account for at least the fraction
¢ of the total number of instructions executed by the prograsnr{dicated by its basic
block execution profile). For the purposes of value-prdfiesed specialization, we use
an empirically derived value af = 0.50, i.e., the hot basic blocks consist of those that
allow us to account for at least 50% of the instructions etextat runtime.

2.3 Value Profiling

Given a set of grogram point registel) pairs to be value-profiled, we use a scheme
based on that of Caldet al. [6] for obtaining value profiles. As mentioned earlier, our
implementation of value profiling obtains profiles for régrs only, not for memory
locations. The actual profiling is carried out by a functioeated for this purpose. This
function, which is added to the program as part of the insémtiation code and invoked
at the profiling points, compares the value of the registquiestion with the contents of
a fixed-size table of previously encountered values. If tireent value is already in the
table, the count of that value is incremented. Otherwigbgtable is not full, the value
is added to the table and its count initialized to 1. If thdgas full the value is ignored.
Periodically, the table is cleaned by evicting the leagydiently used values from the
table: this allows new values to enter the table. We also kaeg of the total number of
times execution passes through the pqirity incrementing a counter associated with
that point.

2.4 Carrying out the Specialization

Code specialization involves two steps: (1) identificatibthe particular specialization
triples, and the corresponding specialization regiorag,ghould be specialized; and (2)
transforming the program appropriately.

The benefit computation described in Section 2.1 is usedettiiy the specializa-
tion triples for which code specialization is worthwhilen€ the actual value profile
has been obtained, we know the distribution of the valuesrtain at the points that
have been profiled and can determine the probalptity(v) with which a valuev oc-
curs. The benefits of specialization have to be weighed agtie costs incurred due
to runtime tests. The cost of such a test depends on theeegisd value being tested:
e.g., testing for the value 0 is usually fairly cheap, whésting for a non-zero floating
point constant may incur a load from memory. The cost ofigstihether a register
has a value is denoted byTestCost(r,Vv). Specializing at a program poiptfor a value
v of a register is then worthwhile only if the marginal benefit, given by

Benefit(p,r) x prob(v) — TestCost(r, V) x Freq(p),

is equivalent to at least one hot instruction (cf. the distrsin Section 2.2).

Once we have identified the set of specialization triplesafbich specialization is
worthwhile, we have to choose which of these should actllgpecialized. An issue
that must be addressed here is that the specializationnefpo different such triples
may overlap. This is illustrated by the following instruntisequence:

Id r5, 0(r4) #r5 :
and r5, Oxff, r6 # 16

Il oad fromO(r4)
r5 & Oxff



Suppose that we have value profiled registérafter thel d instruction and regis-
terr 6 after theand instruction, and that based on the cost benefit analysis, diot
these instructions are candidates for specialization. é¥ew the program points are
dependent—+6 is computed fronr 5—and their specialization regions overlap. De-
pending on the circumstances, it might be better to speeidased on thied instruc-
tion because more instructions use the result of this in8tn; in other situations, it
might be better to specialize based ondimal instruction because its value distribution
might be more skewed. In such cases, we specialize only the pnomising one, based
on the cost benefit analysis; in the case of a tie, the prog@n that dominates the
other is chosen (as discussed below, overlaps are not possiless one of the points
dominates the other).

Given a set of specialization triples, we have to deterntieespecialization region
associated with each of them. The basic intuition is thagmi triple(p,r,v), we want
to identify the instructions that, directly or indirectlyse the value of available atp,
and so might potentially benefit from specialization. Wet firmke precise the notion
of an instruction using a value “directly or indirectly.” ¥&n a program poinp and
registerr, we say thatp,r) influencesn instructionl if (i) | uses the value afat p; or
(i) there is an instructiod at a program poinp’ such thatJ defines a registet; (p,r)
influencesJ; and (p',r’) influencesl. Then, given a tripl&p,r,v), the specialization
region for this triple is defined to be the smallest set ofbhkicksR such that

— Rcontains the basic blod&, containingp is in R;

— if (p,r) influences an instructiohoccurring in a basic blocB;, andp dominates
B, thenB, isin R; and

— if Bisin R, B # By, andB' is a (immediate) intra-procedural predecessoB df
the control flow graph of the program, thehis in R.

Itis not hard to see that, given a specialization trigger, v), the basic bloclB, contain-
ing p dominates every block in the specialization region of ttifé. This is necessary
for correctness: we have to ensure that any execution patledin reach the specializa-
tion region of this triple must pass through the test ingkattp.

There are two issues that are not addressed by this defioitispecialization re-
gions. The first is that, given a triplg,r,v), it may happen thatp,r) influences an
instructionl but the basic bloclB, containingl is not in the specialization region of
this triple because does not dominatB,. This problem can be remedied by duplicat-
ing code so as to makedominateB,. This is an issue that is, by and large, orthogonal
to the main focus of this paper, and so is not pursued furtbes.fThe second is that,
as given, this definition does not take into account the size specialization region
relative to the benefits obtained from its specializatiomay happen that an instruc-
tion | in a blockB; that is very far away from the pointis influenced by the value of
aregister at p. If we includeB; in the specialization region, it is necessary to also in-
clude all of the blocks betwegmandB;, even though these blocks may not benefit from
specialization. This could, in extreme cases, give risatgd specialization regions in
order to include distant influenced instructions. This carnbndled using a notion of
densityof influenced instructions, analogous to the notion of dgmdicase labels used
for code generation foswi t ch statements [5], to limit the specialization regions to
code that contains a sufficiently high proportion of instimes that would benefit from
the specialization. Our current implementation does ndtess this issue.



The final step is to actually carry out the code transfornmatimr specialization.
The transformations that are effected during speciatimatan be quite involved. Since
much of this functionality is already available elsewher@ur system in the routines
that implement various analyses and optimizations, wergdtdo have as little code
as possible for transformations specifically geared tos/aatlie-profile-based special-
ization. Our goal is to transform the code just enough, & plaint, that the desired
specialization will subsequently happen in the course adit@ry” optimizations. We
have only two transformations specific to value-profiledebspecialization:

1. The basic transformation, aimed at transferring coritrapecialized code when
a register has the appropriate value, is implemented asfsllWhen specializing
for a triple (p,v,r), we simply create a cop®' of the specialization regio@ for
that triple and insert a test at program pgirthat tests and branches to the copy
if r's value isv.

2. When value profiling indicates that the iteration courd @ifiot) loopC has a suffi-
ciently skewed distribution, we may generate a specializrdionC’ of that loop
that has been unrolled some number of times. The specific auaflunrollings is
based on the sizes of the bodies of the loop under considerasiwell as those of
any loops in which it is nested, together with the size of tisriiction cache, so
as to avoid excessive unrolling that could adversely affexi-cache utilization of
the program (e.g., see [11]). Control is transferred to th@lled loop by testing
the register controlling the number of iterations against a particukduev, as for
the basic transformation above.

Once the code has been transformed as described, the itimnrtteatr has the value
v when control reaches the cloned reg@n but not the original code fragme@t is
propagated during the course of conditional constant gatian [19]; The actual spe-
cialization of the code then takes place in the course of aboptimizations, which
exploit the additional information that is available abthé value off—and, possibly,
other computations that use the value-efto effect a variety of optimizing transforma-
tions. Using this approach we are able to reuse much of thmigation infrastructure
of our system for value-profile-based specialization, ilegutb a simpler system that is
easier to implement, debug, and maintain.

Given a specialization triplép,r,v), a variety of idioms may be used to implement
the test inserted at the program pomtdepending on the magnitude of the value
and whether or not there is a free register available. If @ fegister’ is available, we
simply compute the difference ofandvintor’, then conditionally branch to the cloned
code ifr’ is zero. If there are no free registers available; i small enough to be an
immediate operand the following pair of instructions isaried:

subgr, v, r#r =1 - Vv
beq r, Beone # if (r = 0) goto Beone
# else fall through to original code

To compensate for the effect of tlseibqg instruction, we add the instructiomddq
r, v, r’atthe entryto both the original specialization region &sdalone. Ifvis too
big to be an immediate operand, one or more instructions reayeleded to compute
it into a register; however, the cost of doing so will haverbggken into account in
TestCost(r, V).



2.5 An Example

As an example illustrating our approach, we consider thetfan memmove()from
the SPEC-95 benchmaplerl. The frequently executed portion of its control flow graph
is shown in Figure 1(a), with the execution count of eachdbkick shown in paren-
theses on the right of the block. Instructions that (diseotl indirectly) use the value
of the third argument, passed in registdr8, are shown in italics. The distribution of
values for this register is shown in Figure 1(b): notice tnr 70% of the time, this
register has the value®IThe instructions along the critical path of the functiontthae
influenced by the value of regist8d.8 are shown in italics in Figure 1. We focus on
the transformations that occur along the critical path ¢f fhnction in the course of
specialization, since these have the largest impact oopeahnce:

— [ +2instructions ] The most commonly occurring value for thegister is 1, and
value-profile-based specialization introduces a testHisryalue in block BO (see
Figure 1(c)).

— [ =3 instructions ] Constant propagation then causes theraimoin of the follow-

ing instructions: beq $18, ...’ from block B1; and the pair¢npul e $1,
0x08, $1',‘beqg $1, ...’ from block B4 (a similar pair is eliminated from
block B7).

— [ —2instructions ] The elimination of théeq $1, ... ’instructionfrom block

B4 causes the deletion of the control flow edge out of B4 awayfihe critical path
(i.e., into the oval marked “[ 14 basic blocks ]”). This ha®teffects. First, it causes
register$20 to become dead at the end of block B4, which allows the deletfo
the instructionaddq $17, $18, $20’in B4. Second, it causes the instruction
‘and $16, 0x07, $2’tobecome partially dead in block B3; partial dead code
elimination then moves it out of B3, and hence out of thealtpath.

— [ —1instruction ] For the instruction paichrpul t $1, $18, $6’,‘beq $6,
... "inblock B2, given that the value of regist®L. 8 is 1, the instruction¢ mpul t
$1, $18, $6’, which does an unsigned comparison of registetsand$18,
will yield a value of 1 only if registefs1 is 0. The optimizer recognizes this and
replaces this pair of instructions by the single instruttiveq $1, '

— [ =1 instruction ] Constant propagation of the value of regi$te8 also succeeds
in deleting arskql instruction (a bit mask instruction used in byte manipolas)
from block B5.

The resulting code is also subjected to other transformsatisuch as code hoisting
and basic block fusion, that are enabled by the transfoomsitilescribed above. The
resulting code is shown in Figure 1(c). The overall effedhefse transformations is to
reduce the length of the critical path through this funcfimm 37 instructions to 32

instructions, a reduction of 13.5%.

6 The basic block execution counts given in Figure 1(a), asasethe value distribution shown
in Figure 1(b), correspond to the training inputs of the SFEBB®Genchmarks, since that is what
a compiler would use to reason about the program. Those amextiin Section 1 refer to the
SPEC reference inputs.



percentage of values

Fig. 1. A specialization example: the functionemmove(jfrom the SPEC-95 benchmaperl)
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addg $17, $18, $20
beq $1, ..

Idg_u $3, 0x0($17)

[ 7 basic blocks |
[ 44 instrs |

(a) (Frequently executed portions of) the control flow graph
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(b) value distribution of regs18

10+

cmpeq $18, 0x1, $0

beq  $0, ...

B2 ga  $0, 0x0($16)
subgq $16, $17, $1
Ida  $20, Ox1($17)
Idg_u $3, 0x0($17)
beq  $1,..

B3 cmpule $1, $31, $6
xor  $17, $16, $1
and  $1,0x07, $1
beq  $1,..

B5 ¢
[21instrs ]
ret ($ra)

(c) After transformation




3 Expression Profiling

The idea of value profiling can be generalized to thaexjfression profilingwhere
we profile the distribution of values for an arbitrary exsies, not just a variable or
register, at a given program point. Examples include aricrnexpressions, such as
“the difference between the contents of registgerandr,’ and boolean expressions
such as “is the value of registes different from that of register,?” In general, as
shown below, the expressions profiled may not even occueipthgram, either at the
source or executable level.

Expression profiles are not simply summaries of value pofieg., given value
profiles for registers, andrp, we cannot in general reconstruct how often the boolean
expressiorr, == ry holds. Expression profiles are important for two reasonst,Fi
they conceptually generalize the notion of value profilesllbywing us to capture the
distribution of relationships between different programtitees. Second, an expression
profile may have a skewed distribution, and therefore engienizations, even if the
value profiles for the constituents of the expression praifike not very skewed: for
example, a boolean expression# r, may be true almost all of the time even if the
values inry andry, do not have a very skewed distribution.

The expressions that we choose to profile are determinedrsidgrations of the
optimizations that they might enable. Our implementatiarrently targets two opti-
mizationsloop unrollingandload avoidance

3.1 Loop Unrolling

Here we try to determine the distribution of the number ofat®ns of the loop. In
simple cases, this may be just the value of a variable: @.g.Joop of the form

for (i =n; i >0; i--) { ...}

In general, however, the iteration count may depend on moneptex expressions
whose value may not be known at compile time: e.g., in a lodh®form

for (i =m i <n; i++) { ... }

iteration count is given by the expressionm This expression does not appear in
the source code. If the iteration count of a loop can be ptedigiven the value of an
expression prior to the execution of the loop, and this ithistion is sufficiently skewed,
we may choose to generate, subject to i-cache considesaiounrolled version of the
loop based on that information. Notice that the test to dewitlether or not to execute
the unrolled version of a loop is made by a single test thattside the loop, so the
associated overhead is not very high.



'

subq $ra, $rb, $rc
addq $rc, A-B, $rc

bne $rc, ...
Idq $r0, A($ra) / \
stq $r1, B($rb) Idq $10, A($ra) Idg $10, A($ra)
1dq $10, A(Sra) Stq rl BEr) stq $r1, B($rb)
Idq $r0, A($ra)

(a) original code (b) optimized code

Fig. 2. Load Avoidance Example

3.2 Load Avoidance

The goal here is to use expression profiling to determindioglships between memory
access operations, and thereby avoid unnecessary memengtiops where possible.
Suppose we have a sequence of operations (typically witlio@ as shown in Figure
2(a). Letk(r) represent the address obtained by adding the contents of register
r. If we can guarantee that the addres&égs;) andB(rp) will never overlap, we can
eliminate the second load operation in the sequence shoamevter, in practice, it is
very difficult to prove that the two instructions will neveverlap. We use expression
profiling to determine how often the two instructions ovpré runtime, and use this
information to optimize the code.

We first identify the instructions that define the index régyisr; andry, and attempt
to determine the rate at which these registers change vilikifoop; if either register
is defined by a load operation from a fixed location, we attexmgetermine the rate at
which the value at that location changes. If we can obtairst@ont rates of chang®
anddy, for these registers, respectively, we consider the folovgases:

(62 = 0p): Here, it suffices to test whethé(ra) # B(rp) at entry to the loop; the
expression profiled in this case is essentially this expyassimplified as far as
possible to reduce runtime overheads.

(02 # Op): Assume thad, > &, and both rates are non-negative (the other cases are
analogous). There is no conflict between the two addressatsdhtry to the loop,
eitherma(ra) > my(rp) or (Ma(ra) +nx da) < My(ry), wherenis the iteration count
of the loop. In this case we profile these two expressionsatgq

In our exampler, andry, are unchanged within the loop. Therefore, we profile the
expressiom\( ra) # B(rp) . If expression profiling determines that at runtime the &bov
expression is true sufficiently frequently, we optimize toele. The specialized code
from our example is shown in Figure 2(b). Again, in the splexa code the expression
is tested once outside the loop and so is not very expensate. that the aliasing test
is not present in either the source code or the original ezl



3.3 Transformation

Expression-profile-based code transformations are natethtical to those performed
for value-profile-based code specialization. A clone ofdffected blocks is created,
and a test is inserted to choose between the specializedarmtithe original code.
Additionally, information about (non-)aliasing betweesinters, obtained from expres-
sion profiling, is attached to the relevant basic blocks. Wéntrely on other parts of
our system to eliminate the unnecessary load and storeatisins.

As an example of the application of expression profilinghm$PEC-95 benchmark
m88ksim expression profiling allows us to determine that three tgoinin a heavily
executed loop within the functioalignd are usually not aliased; this information is
used to eliminate several redundant memory accesses amthyheffect a significant
speed improvement.

4 Experimental Results

Execution Timgsecs)
Program| unspecialized specialized | Tspeg/ Tnospe
(Tnospea (Tspea
compress  260.75%:0.02% 254.25:0.30% 0.975
gcc 220.45-0.16% 221.58:0.08% 1.005
go 309.43:0.81% 301.540.26% 0.975
ijpeg 327.24c0.02% 320.95:0.41% 0.981
li 249.59:0.03% 237.97:0.04% 0.953
m88ksin  220.21:0.08% 189.19-0.06% 0.859
perl 178.96:1.91% 169.54-0.51% 0.947
vortex 301.22-1.09% 297.35:0.05% 0.987

Table 1.Impact of Value-Profile-based Specialization on Execulione

We have implemented the ideas described here withimltiodink-time optimizer
[18]. The programs used were the 8 integer programs from BfeC3S95 benchmark
suite. The programs were compiled with the vendor-sup@iedmpiler V5.2-036, in-
voked ascc - O4, with additional linker options to retain relocation infoation and
produce statically linked executablé8oth the initial execution frequency profiles as
well as the value profiles for each program were obtainedyusia SPEC training in-
puts; the execution times reported were then obtained tise\§PEC reference inputs.

The results of our experiments are shown in Table 1. The secolumn of this
table, with heading “unspecialized”, gives the executiometfor the executables us-
ing all optimizations withinalto except for value-profile-based specialization, while

7 We use statically linked executables becaale relies on the presence of relocation infor-
mation for its control flow analysis. The Digital Unix linkérd refuses to retain relocation
information for non-statically-linked executables.



the third column, with heading “specialized”, gives the @x@n times when value-
profile-based specialization is carried out as well. Thé datumn gives the ratio of
the execution times with and without specialization. Tieirtigs were obtained on a
lightly loaded DEC Alpha workstation (i.e., with no othetige processes) with a 300
MHz Alpha 21164 processor with a split primary cache (8 Kbytach of instruction
and data cache), 96 Kbytes of on-chip secondary cache, 2ddioftoff-chip backup
cache, and 512 Mbytes of main memory, running Digital Uni 4h each case, we ran
the program 10 times and discarded the biggest and smatlestition times; for the
remaining runs, we computed the mean as well as the maximuratie of any run
from the mean. Our results are given in Table 1, with the maxindeviation expressed
as a percentage of the mean.

It can be seen from these numbers that automatic value-gudited specializa-
tion can yield noticeable performance improvements fortrigal programs. Most of
our benchmarks experience speedups, wig8ksimandperl experiencing the largest
speedups of 14.1% and 5.6% respectively. Due to space aonisira description of
the reasons for the performance improvements in the valienshmarks is relegated
to Appendix A. We have not yet determined the reasons for lthed®wn in thegcc
benchmark: sometimes, as shown here, the specialized saitenier than the unspe-
cialized code, while at other times the specialized codastef; we are currently in-
vestigating this problem. A detailed examination of the dewel performance of the
specialized programs, using hardware performance cajntelicates that the perfor-
mance of the specialized programs suffers from deficientiether parts of our system
that we believe will not be difficult to rectify. For exampkgveral of the specialized
benchmarks suffer from an increase in mispredicted bran@oenpressdy about 7%,
perl by about 4%), which we suspect may be due to the layout of tHe.cthe number
of i-cache misses also goes up in some progran@8ksimby 6%;compresdy 16%,
though in this case the miss rate is so low that it is not cleatrthis has a significant ef-
fect), again pointing to code layout as a possible culpré.afpect to be able to address
these problems soon.

Program No. of Program Points
Total | Profiled [Optimize
compress 16749 74 0+1
gcc 271899 7231 | 196+0
go 65328 1352 4+0
ijpeg 49650 243 5+1
li 32221 171 7+0
m88ksin 40867 253 16+0
perl 82462 501 14+0
vortex 113236 322 15+0

Table 2. Extent of Profiling and Specialization

Table 2 compares, for each benchmark, the total number afr@no points that
could have been profiled/specialized (column 2) with the penthat were actually
profiled (column 3) and the number that were then optimizetlifan 4); the last of



Code SizdInstructions)
Program|  unspecialized specialized |lspeq/ Inospe
(lnospea (lspea
compress 17381 17529 1.009
gcc 279429 281584 1.007
go 71046 71169 1.002
ijpeg 51045 52385 1.026
li 29106 29131 1.001
m88ksim 40865 41237 1.009
perl 82167 82304 1.002
vortex 103660 103743 1.001

Table 3.Impact of Value-Profile-based Specialization on Code Size

these entries are given in the form+ n, wherem is the number of program points
that were specialized amdthe number of loops that were unrolled. This indicates that
the our computation of the cost/benefit tradeoffs is higldiestive: for most of the
benchmarks fewer than 1% of the potential candidates fdilipgpare actually chosen
for profiling (gcccomes in highest with a little under 2.5% of the candidatésadly
profiled). Table 3 shows, for each benchmark, the code grthvehresults from spe-
cialization. The small number of points chosen for profilkegeps the value profiling
overhead under control, while of the small number of poitiissen for specialization
keeps the code growth modest. As mentioned previously itide2.2, our profiling
overhead is considerably reduced by applying our beneflysisebefore performing
the value profiling. Caldest al.[7] report a 3% average slowdown for full value profil-
ing on the SPEC-95 benchmarksto, in contrast, produced39.5« slowdowns (6.8
on average) for value and expression profiling.

Figure 3 illustrates the overheads associated with vataéilg-based specialization.
It shows, relative to the time taken lajto to optimize an executable program without
either value profiling or specialization, the following euiéies: (i) the time taken to
instrument the code for value profiling, i.e., to read in aaeiable file, identify candi-
dates for value profiling, insert instrumentation code,arnite out the instrumented bi-
nary (Section 2.2); an(i) the time taken to specialize the program using value profiles
i.e., read in the program as well as the profile data, carralboptimizations including
value-profile-based specialization, and write out therojzied executable (Section 2.4).
The initial cost-benefit computation to identify profilingrdidates, together with the
instrumentation overhead, results in overheads in theerahg0%—-80% (about 44% on
the average) compared to the time for ordinary processirajtby Specialization based
on value profiles incurs overheads of factors ranging frodr b 2.1x (about 187x on
the average).

5 Related work

There is a considerable body of work on program speciatinatiithin the partial eval-
uation community: Jone=t al.give an extensive discussion and bibliography [15]. This
work focuses largely on code specialization starting withwn values for some or all
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Fig. 3. Overhead of Value-Profile-Based Code Specialization

of a program’s inputs. Specialization based on value psfidhere we reason about
the runtime distribution of values taken on by a variabledgsconsidered.

In some ways, our approach to specialization is reminisskatransformation re-
ferred to as “the trick” in the partial evaluation literagu(e.g., see [15]). There are two
main differences between these transformations. Theditkait “the trick” is applied to
variables ofbounded static variation.e., which take on values from a finite, statically
known, set, while our approach does not have such a restrigfi.g., in the example
discussed in Section 2.5, the variable that is specialiaedes over the set of integers).
Furthermore, “the trick” offers no guidance regarding whialues are worth specializ-
ing and which are not: because of this, automatic applinaifahis transformation can
be problematic if the candidate variable is of boundedstadriation but ranges over
a very large, albeit finite, set. The analysis we describetended to address precisely
this problem. As such, it can be a useful complement to stanpartial evaluation
techniques.

Also related to our cost-benefit analysis is the work on sppethalysis in partial
evaluation [2, 15]. This analysis starts with a bindingdiamnotated program, where
variables whose values are statically known are marked els. Speedup analysis
estimates the asymptotic speedup that partial evaluafitimeoprogram would yield.
By contrast to this work, we cannot assume that we have angriiline annotated
program—indeed, the whole point of our analysis is to takéattes whose values
cannot be statically predicted, and determine which if afighe (possibly unbound-
edly many) values taken on by such variables might yieldggeréince improvements.
Another important difference is that we are concerned nth wsymptotic speedups
but rather with concrete improvements in speed, and thexgfay careful attention to
low level issues such as the effects of specialization dnuoson cache utilization (as
discussed, for example, in Section 2.4 in the context of laoplling).

Some implementations of object-oriented languages attéonmitigate the high
cost of dynamically dispatched calls using a limited fornmvalue-profile-based spe-
cialization. The idea, referred to tige feedbackr receiver class predictiofi, 14], is
to monitor the targets of dynamically dispatched functialts; and to use this informa-
tion to inline the code for frequently called targets. Themiiaitation of this approach
is that the specialization is restricted to dynamicallypdished function calls, and so



will not be applied to “ordinary” code even if such code cooghefit substantially from
knowledge of the values most commonly encountered at regntim

Calderet al. have investigated issues and techniques for value profiihgOur
implementation of value profiling was inspired by theirs &dery similar to it. While
Calderet al. consider profiling both registers and memory locations, wiy profile
registers. We use a two-stage profiling process in orderdoaethe time and space
overheads. The idea is to first profile the application usisgrgle basic-block profiler
such as pixie, and then use the execution frequency infasmab obtained to identify
candidates for value profiling and specialization. In aatéht paper, Caldest al. dis-
cuss value-profile-based optimization [7]: they use haadsformed examples to show
that value-profile-based specialization can yield sigaiftcspeed improvements. By
contrast, our work describes value-profile-based speaiidin that is fully automatic
and that has been integrated into a link-time optimizer.

Systems for dynamic code generation and optimization [42Bare also confronted
with tradeoffs between the cost of generating specialinelg @and the savings obtained
from the execution of this code. The problem, while qualily similar to ours, is
considerably more complicated in practice because thémentosts include the cost
of generating the specialized code, which can be difficudistimate precisely. Systems
that extend existing source languages with facilities foraimic code generation, such
as Tempo [8] and DyC [12], generally require users to anedta program fragments
that should be subjected to runtime code generation andedigation, effectively mov-
ing the burden of analyzing the cost-benefit tradeoff to thBystems for dynamic op-
timization of conventionally optimized programs, such asm@mo [4], rely on simple
heuristics to determine whether a code fragment is worthmoping: programs where
these heuristics are inadequate can suffer noticeablerpgfce degradation.

The work that is conceptually closest to that described fesme recent work
towards automating the cost-benefit analysis for DyC [16F §oals of this work are
considerably more ambitious—and also more difficult—tharsoA direct comparison
of the efficacy of the two systems is difficult, partly becatlsey take very different
approaches towards specialization (one is static, the dihamic), and partly because
the benchmarks used by the authors are mostly different énars; of the benchmarks
considered for DyC [13], the only one that is also considéreds ism88ksimFor this
program, Grangt al.report an overall speedup of 5%, whereas we obtain a spedédup o
a little over 13%. Other studies by the authors of DyC sugtiestt assuming that the
cost-benefit tradeoff assessment can be made properlyneugpecialization can yield
significant asymptotic speedups, albeit sometimes witthyfaigh break-even points

(3].

6 Conclusions

This paper describes an implementation of low level codeiapeation based on value
profiles. Fundamental to our approach is a low-level cogefieanalysis that is used
both to reduce the overheads due to value profiling and algtetdify the code to be
specialized. Experimental results indicate that the bestefit analysis is effective in
filtering out unpromising candidates, and that several tnwial programs experience
noticeable performance improvements due to value-prbéiled specialization.
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Appendix A Sources of Improvements

The sources of performance improvements for these bendisraeg discussed below.
There is, however, one caveat. In our system, value-prbéiked specialization is car-
ried out after function inlining. Because of this, the cottecture encountered during
specialization, and the functions associated with theiafiged code fragments, may
not always correspond to those of the source program. Dysattesconstraints we only
report most important sources for improvements.

compress. Expression profiling is used to unroll a loop and identifynremnflicting
memory operations. This information allows memory accesgascing [10].

gcc : Most of the improvement comes from knowing that one of tHaesin the func-
tion notestoreshas the value 34 over 80% of the time, and from knowing that 70%
of the time the third argument to the functisimplify_binary_operationis 34.

go : Roughly half of the improvement comes from specializingaug in the function
j2moreto 0, which causes several conditionals to be eliminatedsthbthe rest of
the speedup comes from specializing a value in the fungtiaynexttato 0.

ijpeg : Expression profiling is used to unrol a loop and simplify teele in the unrolled
loop.

li : Sequences of independent conditionals in functixlesal and sweepare trans-
formed so that the common case is tested firgwht ch statement in the function
livecaris transformed so that the common case did not have to goghrajump
table.

m88ksim: Expression profiling is used to determine that three pasritethe function
alignd are unaliased in the common case, allowing the eliminatfaeeeral load
and store instructions in that function. The functiglitime is specialized for an
argument of 1.

perl : The functionmemmoveés specialized for the single byte move. The (internal)
function OtsDivide64Unsignedvhich emulates integer divison (since the Alpha
does not have an integer division instruction), is spexéaifor the divisor 16.

vortex : Most of the improvement comes from knowing that a value i filnction
Mem GetWordtakes on the value -1 nearly 100% of the time.



