Register Liveness Analysis of Executable Cdde

Robert Muth
Department of Computer Science
University of Arizona
Tucson, AZ 85721, U.S.A.
Phone: 520-621-2858
Fax: 520-621-4246
Email: muth@cs.arizona.edu

* This work was supported in part by the National Science Fatiod under grant CCR-9711166



Abstract

Liveness analysis of variables is a well-understood tepigemployed by most compilers to guide optimizations
such as useless code elimination and register allocatim@nkss analysis can also be performed on object code if
we let registers take the place of variables. The incredsbegest in systems that modify object code or executables
has generated a need for a fast and accurate register bvanalysis. This paper shows how to accurately compute
register liveness information in a time and space efficieahmer and how to cope with irregular control flow not
encountered in high level languages. Tradeoffs betweeprimsion of the analysis and its computation time and
space are discussed. In particular, context sensitive anigéxt insensitive register liveness analysis are congpare
Experimental results on precision, time and space usagereveled as well as the impact of liveness analysis on
optimizations.

KEY WORDS: register liveness analysis; data flow analysis;



1 Introduction

Liveness analysis of variables is a well-understood technique employad&tycompilers to guide optimizations such
as useless code elimination and register allocation [9]. Liveness analysatsoame performed on object code if we
let registers take the place of variables. The increasing interest in sygtabmodify object code or executables has
generated a need for a fast and accurate register liveness analysis. On thecowe hame optimizing systems such
as Alto [10], EEL [7], Etch [12], OM [14], Spike [1] which make uséthbe liveness information in a more classical
way, ie. to reduce number of (executed) instructions. Instrumentgtgtaeras such as Atom [13], Pixie [15] and gp(t)
[5] on the other hand, add new instructions to the executable in ardetlect information about the executable at run
time. Scratch registers needed by those new instructions are obtaineahpgrarily spilling registers to memory or
by changing the compiler to not use certain registers in executables.r$thapfproach slows down the instrumented
executable significantly. In fact, the cost of spilling frequently excéleelsnstrumentation cost itself [6]. The second
approach yields suboptimal uninstrumented executables. As we will gggerdiveness analysis can, in mnay case,
provide the necessary registers at no cost.

Compared to traditional interprocedural variable liveness analysispmisgdural register liveness analysis in exe-
cutable code is both easier and harder. It is easier because there is no aliasggnlregisters and the number of
registers for any given processor is bounded by a constant. It is haadaude the total size of the control flow graphs
is huge, given that the entire program (including libraries) is aviglabonce. One has to be very careful to keep
space and time requirements of the analysis reasonable.

This paper shows how to ompute register liveness information ima éind space efficient manner and how to cope
with irregular control flow not encountered in high level languages. dofd between the precision of the analysis and
its computation time and space are discussed. In particular, contexttvaeasid context insensitive register liveness
analyses are compared. Experimental results on precision, time and spacaregamgeided as well as the impact of
liveness analysis on optimizations. For the integer subset of th€PBenchmark suite, we find that optimizations
using the most accurate liveness analysis may reduce execution time by éonadl@P6 over the same optimizations
using the trivial liveness analysis which assumes that all registersvarat the end of a node (basic block), even for
programs compiled with a high degree of compiler optimization.

Related Work: Work most closely related to our own has been done by Srivastava and Wik @M optimizer
[14] and by Goodwin on the Spike optimizer [2]. We improve on thiggness analysis in three ways. Firstly, we
have changed the underlying flow equations resulting in three sets ofaldentical equations, which simplifies
implementation and reasoning about correctness. Secondly, we acceleratedim fix@ation by exploiting a novel
insight about the interdependence of the various pieces of data flownafimn. This idea is also applicable to liveness
analysis of variables. Thirdly, we show how to reduce the space requiterhtre analysis by recomputation and
exploitation of the new data flow equations.

We also show how to adapt liveness analysis to an environment where (agseoda maybe handwritten and hence
may not satisfy the “clean” control flow behavior of compiler generated codeafproach, using so called compen-
sation edges, is automatic while earlier proposals [16] special cased alhdheldzehaved functions in the standard
libraries and hence could not cope with other misbehaved functions.

Furthermore, we explore ways to improve the accuracy of liveness anaimi a known technique involving callee-

save registers we point out a possible generalization.

Larus and Ball [6] describe a more ad hoc scheme to “scavenge” registersfiamientation purposes. However,
they fall back to spilling when programs are compiled with higher otition levels or when code is hand tuned and
therefore does not conform with calling conventions.

2 Basics

2.1 The Interprocedural Control Flow Graph

The basis for any kind of interprocedural data flow analysis is the irdeegglural control flow graph (ICFG), or some
equivalent representation of the program. The construction of such eotctiotv graph for ordinary programming
languages is standard [4, 11]. For executables it is slightly moreuwliffaut similar.



An ICFG consists of the (intraprocedural) control flow graphs (CFGhe functions within the program, together
with additional edges and nodes to account for interprocedural control foeall to a functionf is modeled as
depicted in Figure 1. The callsitec, n;) consists of two nodes the call nodgand a return node;. There is a call
edge fromm to the init node off, and a return edge from the exit nodefab n,;. The exit node is the unique successor
node of all nodes that return from the function. Hence execution of @ifumstarts at the init node and ends at the
exit node.

Caller Callee

return

Figure 1: Modeling of Function Calls in an ICFG

The set of all nodes of the ICFG is denotdddesandNodes$f] denotes the subset of nodes belonging to function
f. The set of all functions is denotdeunctions the set of all edges is denotédiges The distinguished function
entry funis where the execution of the program begins. For a npdeypdn| denotes its kind, iecall, return, init,

exit or other. The set of immediate successor (resp. predecessor) nodes of aisaimotedsucgn] (resp.Predn]).

For any functionf € Functions InitNoddf] (resp.ExitNodéf]) denotes the init (resp. exit) node bf

For any call nodec, ReturnNodg] denotes the corresponding return node@atlednc] denotes the function being
called. Similarly, for any return nodg, CallNoddn,] denotes the corresponding call node @adledn;] denotes the
function that was called.

2.2 Interprocedural Data Flow Analyses

Intraprocedural data flow analyses consider all possible paths in the faF@rction to give an estimate of what data
flow facts hold at a given node. Conditionals are not interpreted so thi®agh potentially includes paths that are
never executed in reality and the estimate will be somewhat conservative.

For interprocedural data flow analyses we can simply adopt the intrapratagproach and regard the interprocedural
CFG as one big ordinary CFG, treating call and return edges as regular edgayses performed in this fashion
are called context insensitive interprocedural analyses. Such analyses ples lmitnoften yield rather conservative
estimates since many paths in the ICFG do not reflect real program executiorexample is shown in Figure 2
where two callsites call the same functibnConsider the pat@1 — IN — EX — R2. This path returns to the wrong
callsite and hence does not occur in any execution. But since vagaiidaised irR2 and not defined along the path
we conclude thad? is live atC1, while in facts2 is dead, as it is defined RiL.

Paths which do not return to the wrong callsite are called realizable patiSle+ IN - EX — R1LorC2 — IN —
EX — R2. See [4] for a more rigorous definition.



Call Site 1 Call Site 2

Function f
s1=0 s2=0

call f() vo=1 call f()
return

s2=0 t2 =s2 +Vv0

t1=s1+v0

Figure 2: Imprecision

A context sensitive interprocedural data flow analysis considers onizabld paths in the ICFG [8].

3 Interprocedural Liveness Analysis

3.1 Context Insensitive Analysis

As described in the previous section, the context insensitive ligeareaysis uses the standard intraprocedural analysis
[9] and applies it to a program’s ICFG treating call and return edges asaoydidges.

The analysis iteratively computes the fixpoint of the equations below
Liveln[n] = usdn|U (LiveOufn] —def[n]) ne& Nodes
LiveOufn] ={Jse€ Sucén|: Liveln[s] n € Nodes
subject to the initial values
LiveOufn] =0 ne Nodes
Liveln[n] =0 neNodes

R denotes the set of all registers. For each nodke f[n] contains the registers which are defined,insén| contains
the registers which are used before they are definad in

3.2 Context Sensitive Analysis

For the context sensitive liveness analysis we must restrict oursereslizable paths through the ICFG. This is
achieved by considering intraprocedural paths only and modeling funziggiusing summary information for the
called function [8]. Conceptually, all call and return edges are removed frefRG and an edge between a call
noden. and its corresponding return nodgis introduced. Data flow through that edge is subject to modifications
described by the summary information for the called function.

Two pieces of information are necessary to summarize the effects of each fuhctiliveness:

e MayUséf]. The set of registers that may be usedfbyA registerr may be used by if there is a realizable
path frominitNod€f] to a use ofr without an intervening definition af. MayUséf] hence describes the set
of registers which are always live ltitNod€ f] independent of the calling context and hence will be livecat
Typically these are the registers which are used to pass arguments iorfiuinct

e ByPas§f]. The set of registers which if live at will be live atn.. Typically these are the register which are not
used at all byf.



We also define

e MustDef{f]. The set of registers which must be defined (written to) on all path®s fritNod¢gf] to
ExitNodéf].

e MustDeadf]. The the set of registers which must be defined on all pathslinitdode f] to ExitNodéf] and
are not used before they are defined. CledlystDeadf] = MustDe ff] — MayU sgf]

The description oByPas$f] above does not define it uniquely. If a register is always live at theitesllsalling
f then we can include it iBByPas§f]| even if the register is never live at any of the corresponding retudesio
Consequently, we have a certain freedom of choiceBiglPas§f]. Srivastava et al. [14] choodgyPas§f] to be
MustDeadf]. The problem with this approach that it introduces a mutual dependenegdreByPassnformation
andMayU seinformation which complicates the flow equations. Goodwin [2] cho@sd2as$f] to beMustDe ]
which does not have this problem and is therefore preferable. In fact, amhist lies betweemMustDe{ f] and
MustDef f]uMayUséf] is a valid candidate foByPas$f]. Our choice forByPas§f] is a superset of Goodwin's
and will result in more uniform data flow equations.

Our analysis proceeds in three phases. The first two phases compute tharguniormation for functions, which is
used by the third phase to perform the actual liveness computation.

Phase 1: Computation of byPa§f] : iteratively compute the fixpoint of the data flow equations listedwelo
ByPasslin| = usén| U (ByPassOun| — def[n]) n e Nodes
ByPassOun] = Js¢& Sucgn|: ByPasslis] n € NodesA Typén| ¢ {call, exit}
(ByPasfCallegn]|nByPasslin]) ne NodesA Typén] = call A
n’ = ReturnNodf]
ByPas$f] = ByPasslfinitNodg f]] f € Functions
Subject to the initial values

ByPassOyn] :=0 ne Nodes\ Typdn| # exit
‘=R neNodes\ Typdn]= exit

ByPasslin] =0 neNodes

ByPas$f] =0 f e Functions

Note that contrary to the intraprocedural liveness analysis or the ddng®nsitive analysis the choice of the
starting values is crucial, eg. initializirgyPassOytf | of non exit nodes t&} as in [2] yields overly conservative
results [3].

Phase 2: Computation of mayUs$€| : iteratively compute the fixpoint of the data flow equations listedwelo
MayU selnn] = usdn|U (MayUseOufn| — def[n]) n e Nodes
MayUseOun] = Jse€ Sucdn]: MayUselrjs] n € NodesA Typdn| ¢ {call,exit}
= MayUséf]U (ByPas§f| nMayUseliin]) ne NodesA Typén] = call A
n' = ReturnNodf] A f = Calledn]

MayUségf] = MayUselninitNodg f]] f € Functions
subject to the initial values
MayUseOun] :=0 ne Nodes
MayU selnn] =0 ne Nodes
MayUséf] =0 f € Functions
ByPas$f] :=as computed in Phase 1f € Functions
Phase 3: Computation of liveness informatioiteratively compute the fixpoint of the data flow equations listed
below
Liveln[n] = usdn|U (LiveOutn] —def[n]) ne Nodes
LiveOutn] =Jse€ Sucdn]: Liveln[s] ne NodesA Typén] ¢ {call}q

= MayUséf]U (ByPas§f]| nLivelnn]) ne NodesA Typén]=call A
n' = ReturnNodf] A f =Calledn]

Lit is difficult to give more intuitive description for this ofce other than the fixpoint equations



Unified Dataflow Equations:

Dataln[n| = usén] U (DataOutfn] — def[n]) n € Nodes

DataOufn] = Jse€ Sucgn]: Dataln[s] n € NodesA Typdn] ¢ NoPropTypes
= MayUséf] U (ByPas$§f] N Dataln[ReturnNod@]]) ne NodesA Typédn] =call

Summaryf] = Dataln[InitNod¢ f]] f € Functions

Unified Initial Values:

DataOutn] :=0 n € Nodes\ Typén] # exit
= ExitDataOutInit n e Nodes\ Typédn| = exit
Dataln[n] =0 n e Nodes
Summaryf] =0 f € Functions
Phase Adaptations:
Dataln DataOut NoPropTypes| Summary| ExitDataOutlnit

Phase 1) ByPassIn | ByPassOut | {call,exit} ByPass | R
Phase 2| MayUseln| MayUseOut| {call,exit} MayUse | 0
Phase 3 Liveln LiveOut {call} — 0

Figure 3: Unified Fixpoint Computation

subject to the initial values

LiveOufn] =0 ne Nodes
Liveln[n| =0 ne Nodes
MayUsgf] :=as computedin Phase 2f € Functions
byPas§f] :=as computed in Phase 1f € Functions

Note that phase 3 propagates liveness information into the exit nddksphases 1and 2 do not.

Differing from Goodwin’s approach we have modified the equatiorBgiPassiin] by adding (unioningusen| to

the right hand side. This makes oByPasssets strictly bigger than his but sineesdn] C MayUselrin] holds,
ByPasslfinitNod¢ f]] will still lie betweenMustDeff] and MustDeff] UMayUséf]. The major virtue of this
change is that it makes the equations of the three phases sufficientlgrsiihat they can be unified into just one
simple and compact set of equations (c.f. Figure 3). The code implergehgnanalysis, which uses the unified
equations by means of a subroutine call is also correspondingly siampdesmaller. The bigger sets do not affect the
performance if they are realized as bit vectors.

3.3 Tuning the Context Sensitive Analysis

The three phases above can be run in parallel. However, if executed sequémtialbace used to hoklyPassOun|
andByPasslin] in Phase 1 can be used to halthyU seOufn] and MayU selrin] in Phase 2 which in turn can be
reused in Phase 3 to holdveln[n] andLiveOufn]. When comparing Phase 2 with Phase 3 it becomes evident that
the fixpoint forLiveOutn] resp. Livelnn] must be a superset of the fixpoint flstayU seOufn] resp. MayU selrin].
Hence, it is safe to initializ&iveln[n] := MayU selrin] andLiveOutn] := MayU seOum| thereby accelerating Phase

3 by not having to start the fixpoint iteration from scratch.

Next we describe how to improve Phase 3 more drastically expldhimfpllowing observation. We focus on Out-sets
here, In-sets are analogous. For a regissgtrnoden of function f, we have

r € LiveOutn] = r € MayUseOum] V r € ByPassOun]
Conversely,
r € MayUseOufn] = r € LiveOutn]

Butr € ByPassOUn] # r € LiveOutn]. The later does not hold because our initial valuesBiglPassOubf the exit
nodes were pessimistic; we essentially assumed that all registers cdivd.Hauring Phase 3 it might turn out that
not all registers are live at some exit nodes. The correct condititreisfore

r € ByPassOuyn| A r € LiveOufExitNodgf]] = r € LiveOufn] (1)



This suggests the following alternative approach for Phase 3 whicthbasrtue that it only iterates over the call
graph rather than the much bigger supergraph.

(1) FOREACH neNodes DO

(2) Li veQut[ n]: = MayUseCQut [ n]
(3) Li vel n[n] := MayUsel n[ n]
(4) REPEAT
(5) changed : = fal se
(6) FOREACH f eFuncti ons DO
(7) new_out := |J seSucc[ ExitNode[f]] : Liveln[s]
(8) | F new out # LiveQut[ExitNode[f]] THEN
(9) changed : = true
(10) liveQut[exit[f]] := new_ out
(11) FOREACH neNodes[f] DO
(12) Li veQut[n] : = MayUseCQut [ n] U(ByPassCQut[n] N new_out)
(13) Liveln[n] := MayUseln[n] U(ByPassln[n] N new_ out)

(14) UNTIL —-changed

We begin by setting the start values for the fixpoint iterationsgiia improvement mentioned above (Lines 1 through
3). Then, we recompute the liveness information at the exit nodeslflumations until there is no change (Lines 4-
14). If the liveness information at an exit node has changed we propaimtdhange according to (1) to all nodes of
this function (Lines 11 through 13). Note, that it would suffice togagate this information to return nodes only.

LiveOutandMayU seOut(resp. Liveln andMayU sel) need not be kept in separate locations; they can be merged
into one, ie. all occurrences afveOut(resp.Liveln) can be replaced bylayU seOut(resp.MayU selr) which will

then contain the liveness information upon completion of the fixgténation. This also renders the first three lines
of the algorithm unnecessary.

Since the last phase is usually the costliest of the three, this iraprent cuts down execution time by 25%. (See the
following section for experimental results). The drawback is that spsage almost doubles because both ByPass and
MayUse information have to be kept around for each node (assumiaghformation has been merged withayU se
information).

The enhancement is also applicable to ordinary interprocedural livenessemalysriables.

3.4 Implementation and Performance of the Liveness Analyses

We have implemented the context sensitive and context insensitereelss analysis algorithms as part of Alto [10],
an optimizer for DEC UNIX/Alpha executables. Besides the speed of thesasia@pace consumption was of primary
concern to us. We found that it is usually better to recompute a data imtehstore it. Thus, Alto only stores
the variousOut-sets associated with a node. Tiinesets are computed by traversing the instructions of a basic block
backwards? def andusesets are not needed at all.

The relatively small number of instructions in a typical node makedhisroach viable. We also do not maintain
a worklist of those nodes that need to be reconsidered during the fixiedifeoation because this would incur the
cost of another pointer per node. Instead, we mark those nodes which neeguéation and iterate over all nodes,
processing marked nodes until no marked ones are left.

The total space requirement for the context insensitive liveness am@y®4 bits per node to hold théveOutin-
formation. (1 bit for each of the 64 registers of the Alpha CPU).tRercontext sensitive analysis running the three
phases sequentially we need an additional 128 bits per function to hdyBessandMayU sesummary information
simultaneously. For the improved version of the context senstiadysis described in the previous section we need
an additional 64 bits per node because we need to abt@gd seOutandByPassOusimultaneously.

2Alternatively, we could keep thEN-sets and recompute th@U T-sets from the successor nodes. However, when an optiotizageds to
determine which registers are live at a point within a notis,inore convenient to have ti@ T-sets readily available.



Our experiments are based on the integer subset of the SPEC95 benchitearlEgure 4 summarizes their basic
characteristics. The benchmark programs were statically compiled, hencentbenstinclude library functions.

Benchmark| Instructions| CFG Edges| Nodes| Functions
compress 18759 9222 | 5017 241
gcc 295096 158721| 77501 2127
go 71721 29452 | 15692 602
ijpeg 54611 21530| 11530 636
li 34768 17723| 9134 643
m88ksim 46117 21938 | 11469 525
perl 90318 44995 | 22658 615
vortex 127383 58105| 28461 1023

Figure 4: Characteristics of SPEC95 integer executables

Figure 5 shows our experimental results for the liveness analysesleéBdsne and space usage we also measured the
precision. For the improved context sensitive analysis, the spacénamdequirements are given in parentheses (the
precision is not affected). The precision is computed as the average nuhteoregisters at the end of all nodes,
ie. the average size of théveOutsets restricted to integer registers.

The last column contains the difference in precision between the contesttigeand insensitive analysis.

The measurements were obtained on a DEC Alpha workstation, with a B20Mpha 21164 processor and
512MBytes of main memory, running DEC UNIX 4.0. The benchmarks wernepie with the DEC C compiler
V5.2-036 invoked agc - X4 - non_shar ed. This instructs the C compiler to use the highest optimization Jevel
with additional flags to make the linker retain relocation informatiowl, @sults in statically linked executables.

Benchmark|| Context Insensitive Context Sensitive (improved) A
Space| Time | Prec. Space Time | Prec.|| Prec.
compress 40kB | 0.05s| 2.9 44kB(84kB)| 0.15s(0.10s) 4.1 1.2
gcc 620kB | 1.30s| 2.9 || 654kB(1274kB)| 3.75s5(3.00s) 5.5 2.6
go 126kB | 0.20s| 4.3 || 136kB(262kB)| 0.55s(0.40s) 8.8| 4.5
ijpeg 92kB | 0.15s| 2.9 102kB(194kB)| 0.40s(0.30s) 3.8 0.9

li 73kB | 0.10s| 2.4 83kB(156kB)| 0.30s (0.20s) 4.0| 1.6
m88ksim 88kB | 0.15s| 3.0 96kB(184kB)| 0.35s (0.250) 5.0| 2.0
perl 181kB | 0.30s| 2.9 | 191kB(372kB)| 0.85s(0.65s) 4.6 1.7
vortex 228kB | 0.45s| 2.9 244kB(472kB)| 1.30s(1.00s) 55| 2.6

Figure 5: Performance Liveness Analysis

The context sensitive analysis finds between 0.9 to 4.5 more deadergggstnode than the insensitive analysis
and takes roughly three times as long to compute. Our improvement to thextgensitive analysis speeds the
computation up by approximately 25% at the cost of a roughly twice #mony usage.

It is surprising that on the average at least 4 registers seem to be deackatitbf each node. Those dead registers
could be used as scratch registers by an instrumentation tool such asnpte@d of spilling registers to memory
thereby reducing profiling overhead.

4 Control Flow Irregularities

In this section we examine possible anomalies in the interprocedutabtfiow graph of executables. These anoma-
lies are not encountered in flow graphs derived from high level languagégriuing them will result in an incorrect
analysis.



4.1 Unknown Control Flow

Unknown control flow is rather common in executable code since much affitvenation present in the source code
of the executable has been lost during compilation and linking. Tlee timajor sources for unknown control flow are

e switch or case statements compiled into computed jumps
The compiler generates stylized instruction sequences for switch statemeéitsrare by careful analysis the
location and the size of the jump table can be recovered. If, due to optiomigair hand tuning, the stylized
instruction sequence becomes obfuscated, we are unable to determinesthiesoscessors of the jump node
and and consequently are not able to determine how other nodes can be reached.

e exception handling
This issue is, of course, very implementation specific but often quitdes to switch/case statements. When an
exception is raised control is usually transferred via a computed jumpamdler (which might be in a different
function). The possible targets of the jump are unknown and fovendiandler the possible predecessor nodes
are unknown,

e invocation through function pointers
This can be either explicit or implicit (virtual functions), so that fmme callsites we are unable to identify the
function being called. Conversely, we are sometimes unable to identifyeatlallsites calling a given function.

The following standard technique [14] is used to cope with unknovmtrobflow. It is safe but very crude. A special
nodehellnodec Nodesand a special functiohnell fune Functionsare added to the ICFG. If not all possible successor
nodes of a noda can be determined, an extra edge froro hellnodeis added. (Ifnis a call node then a call to
hell funis added instead.) If not all possible predecessor nodes of aneatebe determined, an edge fritwelinode
tonis added. (Ilnis an init node then a call frotnell funis added to the function containimgnstead; in particular
hell funcallsentry fun the distinguished function where program execution begins.)

For the data flow analysisellnodeandhell funwill be associated with the worst case assumptions:

ByPassOuyhellnodé =% LiveOuthellnodé =%
ByPasslfhellnodé R Liveln[hellnodé R
R

MayUseOuthellnodé =R MayU s¢hell fun]
MayUselrihellnodé =R ByPasshell fur] =R

For the context insensitive analysis we will identifglinodewith hell fun

4.2 Escaping Branches

Escaping branches are branches from the middle of a function into tlibenaitianother. Traditional ICFGs [11, 4] do
not consider edges corresponding to those branches. The only allowegsfgocedural edges are call and and return
edges. Escaping edges occur frequently in hand tuned assembly code, the M fiprary of DEC UNIX is a
good example. If an error occurs during a system call (eg. open, close, read] é returned and the global variable
errno is set to an special error code describing the error. The library desigaeesdctored out the code that sets
theer r no variable into a functiomoer r or . Figure 6 depicts the situation for the system functibmse.

10



Function
close

call edge

Function
doerror

escaping edge

save r0,errno
move #-1,10

return

C

A

return edge

Figure 6: Escaping Edges

Since no function directly calldoer r or, a naive analysis might find that register r0 is not live at the end déno
D.The move instruction iD could then be deleted resulting in an incorrect program. Note, that thidepncalso
needs to be addressed in a context insensitive analysis.

A simple fix would be to treat all functions with escaping edges as if we casayoanything about them, ie. similar
to hell fun We found this to be too limited because of the extra imprecisioodniced by this approach. Our solution
to the “escaping edge problem” is to introduce compensation edges intoRe If there is an escaping branch from
function f to g then a compensation edge fréwitNodédg] to ExitNodé€f] is added. Interprocedural liveness analysis
now works as usual because liveness information readhxitN odgo perj also propagates through the compensation
edge toExitNodédoerror] and does not cause r0 to be dead. The situation is depicted in Figure 7.

compensation

Figure 7: Compensation Edges

4.3 setjnpandl ongjnp

The standard C library contains two functiosgt j mp andl ongj np, which exhibit a rather irregular control flow

behavior. Despite their frequent use, eg. in the three SPEC95 benchgtark, and perl, they are neglected in the
literature .

set | np saves program state, such as registers and the program counter, into syrasragassed to it as an argu-
ment. Ifl ongj np is called with the same memory area it will restore that program state. Hédwcegturn node
of a callsite ofset j mp can potentially be reached from many nodes while the return node of aealisibngj np

will probably not be reached at all. Treatisgt j np andl ongj np as regular functions does not model the control

11



flow correctly. The following scenario demonstrates this. Suppostohbdl) variable is defined just before a call to

| ongj np. This definition might appear to be dead in a naive analysis because tliblearight not be used (live)
at the corresponding return node.

Using compensation edges, the problems can be solved quite simphngelepimodifications to the ICFG at a bare
minimum and introducing only a moderate amount of imprecision. Rerfinctionset j np we add a compensa-
tion edge fromhellnodeto the ExitNodéset jmp. For the functiorl ongj np we add a compensation edge from
ExitNodélongjmg to hellnode The situation is depicted in Figure 8.

Function Function
setjimp longjmp

init init
node node

hellnode

Figure 8:Set j np andl ongj np

5 Improving the Precision of Context Sensitive Register Livenessialysis

This section explores on how the precision of liveness analysis can bevieth An obvious source for improvement
is our overly pessimistic treatment bélinodeandhell fun This will be exploited in 5.2. Section 5.1 shows how
some registers which the analysis correctly identified as live can neves#had regarded as dead in some contexts.

5.1 Callee Save Registers

As described by Goodwin in [2], information about callee save registan be exploited to reduce the humber of
live registers. LeSavedf] denoted the registers which are saved and restordddng which are otherwise not used
before defined irf. Savedf] will be a subset oMayUs¢f] because the saving of a register at function entry will be

regarded as a use of that register by the liveness analysis. Howesersghis only relevant if is the register is live at
the return node of a given callsite.

Hence we can remov@avedf] from MayUs¢f] and instead add it tByPas$f] without affectingsafety The fol-
lowing slight modification of the equations updating the summafigrination in Phase 1 and 2 achieves the desired
effect.

ByPas$f] = ByPasslfinitNodgf]] U Savedf] f € Functions

MayUséf] = MayUseliinitNoddf]]—Savedf] f € Functions
In order to get a better insight how this optimization opportunityes and how it may be generalized we consider the
following (hypothetical) code for complex addition and two of its sids.

Cal I sitel:
Conpl exAdd: | oad r 10, nem ocl Callsite2:
add r10,r12,r0 | oad r11, mem oc2
add r11,r13,r1 l oad r12, mem oc3 bsr Conpl exAdd

12



ret | oad r13, mem oc4 mul r0,r0,r0
bsr Conpl exAdd mul rl,rl,rl
move r0,r10 add r0,r1,r0
bsr  Print Nunber

For Conpl exAdd the real and imaginary part of the first summand is passed in registeedlfl 1, the real and
imaginary part of the second summand in registers r12 and r13, and theisesturned in rO and riCal | sit el
just prints out the real part of the result, whial | si t e2 computes its squared norm.

Clearly, registers r10 through r13 will be live at both callsite$ hefore the call t&Conpl exAdd. ButCal | sitel
only uses the real part of the result hence the result computed by the sstmmdConpl exAdd is useless. A lazy
programming language would neither execute this add instructiofmadanstructions computing the values of registers
r11 and r13. Unfortunately, we cannot eliminate the add instructiweslal | si t e2 uses both resultsrO and rl. Be
we can consider registers r11 and r13 to be dedthht si t el and subsequently eliminate the corresponding load
instructions. Registers r11 and r13 will then have arbitrary valudstenadd instruction produces an arbitrary result
which is ignored®

In this light the callee save registecan be regarded as an additional argunagiaind resulrs of the functionf. (s,

as, andrg will of course denote the same registex)will be moved to a new location and then from theredolf rg

is not live at a given returnnode the move operations are useless. Bobas we cannot delete them. All we can do
is markas as dead at the corresponding callnode and this is exactly what is achieved/ingsfsom MayU s¢f] to
ByPas§f].

5.2 Calling Conventions

Suppose functiori does not use or define registeand does not call any other function. Our liveness analysis will
determine that € ByPas§f]. Now assume that and any function calling obey some sort of calling convention
which state that registeris not preserved across procedure calls and does not carry a result. Thésithptr will

not be live at any return node of a callsite bfnd it is therefore safe to removdrom anyByPas§f]. In fact, it

is irrelevant whether is in ByPas$f] or not. The smalleByPassset is nevertheless desirable, becausiéfun or
hellnodemay introduce unwanted liveness information into the analysis whialduze partially eliminated by the
smaller set. Unfortunately, we have no control over the enforcement afigalbnventions in general, except for
system calls. In fact, compilers often violate calling convention when pleefprm interprocedural register allocation
or when library functions are invoked that implement missing hardweatifes such as a divide instruction. It seems
reasonable, however, to assume that calls to shared libraries and callshtfwoation pointers respect the calling
convention.

In our current version of the liveness analysis those calls are modeleddtptahell fun An enhancement would be
to model this as a call to a different functieps fun(or a special nodsysnodédor a context insensitive analysis).

Let sysusedenote the set of registers potentially used according to the callingeobons andsyssavehe set of
registers preserved across function calls. The liveness analysis wilbjoeestied with the following assignments.

ByPassOysysnodg := syssave LiveO{gysnodg := sysuse)syssave
ByPasslifsysnodg = syssave Livelsysnode  :=sysuse)syssave
MayUseOufsysnodg := sysuse MayUsgsysfuh :=sysuse
MayUselrisysnodg = sysuse ByPapgy/sfuth ;= syssave

3If add can cause a side effect such as an overflow this appiaéicourse not valid.
4If the calling conventions for system calls differ from tled®r regular functions, as it is the case for DEC UNIX for thiphfa, we introduce
one function/node for each set of calling conventions

13



5.3 Performance

We have added the enhancements described in the previous sections tot#x¢ semsitive analysis and measured
the resulting gain in precision. Figure 9 shows the average numloiraof registers at the end of a node without any
enhancement, with one of the enhancements, and with both enhancements.

Our experiments show that incorporating both enhancements increasestherraf dead registers by between 1.8
and 4.3. The enhancements seem to be synergetic since the total improvebigger than the sum of the individual
improvements.

Benchmark| None | Save| Call. Conv. | Both | Both - None
compress 41| 4.2 6.8 7.6 3.5
gcc 55| 6.0 74| 8.5 3.0
go 8.8| 9.0 10.2| 10.6 1.8
ijpeg 3.8| 3.9 7.6 8.1 4.3
li 40| 4.2 6.1 6.6 2.6
m88ksim 50| 5.3 7.1 8.0 3.0
perl 46| 4.9 71| 8.0 3.4
vortex 55 6.2 7.2 8.7 2.2

Figure 9: Impact of Enhancements to Liveness Analysis

6 Applying Register Liveness Information

Ultimately, the utility of an analysis should be measured by the extawhich it enables optimizations to be carried
out. In particular, an analysis that attains improved precision at the tivgtreased complexity should be justified by
the additional code optimizations that become possible as a resu#t mhfrovement in precision.

There are a variety of optimizations that will benefit from register lgminformation: (partially) dead code elimi-

nation, common subexpression elimination, loop invariant optireiaat moving stackvariables into registers, etc. In
this section, we will focus on reload avoidance. In the next section vaki&e the extent to which this and other
optimizations are affected by the different versions of liveness analysis.

Reload avoidance attempts to reduced the number of load instructionsdgram. If a value has been loaded from or
stored to a memory location, then a subsequent load from the same lazatibe avoided if there are no intervening
store instructions overwriting the location. Often, the reloadedevéd still available in some register and the load
instruction can be replaced by a move instruction (from that regidfaije reloaded value is not available, liveness
analysis might allow us to find a free scratch register that can carry it. @oagation can then be applied to
eliminate those move instructions. But even if the move inswasticannot be eliminated there is a benefit, since
move instructions typically have smaller latencies and fewer sched@gtgations than load instructions. Our reload
avoidance is performed on extended basic blocks.

6.1 Experimental Results

In order to measure the effectiveness of the liveness analysis, we optithezedeger subset of the SPEC95 bench-
mark suite with the Alto system. The benchmarks were compiled as desanilsedtion 3.4. Profiling information
was obtained using pixie and the training data sets provided by SHBE pfofiling information is used by some of
optimizations performed by Alto.) Actual measurements were done wathetference data sets.

Figure 10 shows the execution time of the optimized executables asedyrthe UNIX time command (user time)
while the system was very lightly loaded. This reflects the overall effectigs of the optimizations performed by
Alto. With the enhanced context sensitive liveness analysis, Alto i tabfeduce the execution time by up to 7%

14



Benchmark

trivial

context insensitive

enhanced context sensitiy

compress
gcc

go

ijpeg

li
m88ksim
perl
vortex

261.2 (100.0%)
236.6 (100.0%)
344.5 (100.0%)
329.2 (100.0%)
254.1 (100.0%)
215.2 (100.0%)
205.1 (100.0%)
346.6 (100.0%)

260.2 (99.6%)
231.1 (97.7%)
344.5 (100.0%)
325.5 (98.9%)
250.5 (98.6%)
219.1 (101.8%)
200.6 (97.8%)
322.8 (93.1%)

261.2 (100.0%)
221.6 (93.7%)
336.7 (97.7%)
324.6 (98.6%)
245.9 (96.8%)
213.5 (99.2%)
190.0 (92.6%)
321.5 (92.8%)

Figure 10: Running time in seconds after optimization with diffeteehess analyses

Benchmark

trivial

context insensitive

enhanced context sensitiy

compress
gcc

go

ijpeg

li
m88ksim
perl
vortex

12037M (100.0%)
11493M (100.0%)
19370M (100.0%)
20115M (100.0%)
17382M (100.0%)
15133M (100.0%)
12311M (100.0%)
24183M (100.0%)

11750M (97.6%)
11054M (96.2%)
18483M (95.4%)
19829M (98.5%)
16700M (96.0%)
14057M (92.9%)
11684M (94.9%)
22916M (94.8%)

11748M (97.6%)
10756M (93.6%)
17754M (91.7%)
19820M (98.5%)
16323M (93.9%)
13790M (91.1%)
11241M (91.3%)
22408M (92.7%)

Figure 11: Dynamic loads after optimization with different livenessysed

(vortex,perl) over the trivial liveness analysis which assumes thatgiliters are live at the end of a basic block. For
benchmarks like compress and m88ksim, whose execution time is dedhioatsmall loops, the improved liveness

information has little or no benefit. In fact, compress and m88ksimbéxdun anomaly in the execution time for the

context insensitive analysis which is probably due to deficiencies imstruction ischeduler.

Figure 11 shows the (dynamic) number of load instructions execut#iuebyptimized executables. This primarily
reflects the effectiveness of the load avoidance optimization. Comparedriwih liveness analysis, the enhanced
context sensitive analysis will reduce the number of load instrustiyrup to 9%.

References

[1] Robert Cohn, David Goodwin, P. Geoffrey Lowney, and NormatiRu Spike: An optimizer for Alpha/NT
executables. IThe USENIX Windows NT Worksh@&eattle, Washington,USA, August 1997.

[2] David W. Goodwin. Interprocedural dataflow analysis in an executgttien@er. InACM '97 Conference on
Programming Language Design and Implementatmages 122—-133, Las Vegas, Nevada, USA, June 1997.

[3] David W. Goodwin. Personal communication, 1997.

[4] William Landi and Barbara Ryder. Pointer-induced aliasing: A problaxonomy. INACM '91 Symposium on
Principles of Programming Languaggsages 93-103, Orlando, FL, USA, January 1991.

[5] James R. Larus. Efficient program tracirgomputey 26(5):52—61, May 1993.

[6] James R. Larus and Thomas Ball. Rewriting executable files to measuy@pr behaviorSoftware — Practice
and Experiencg24(2):197-218, February 1994.

5The count where obtained using the hardware performanagemnof the Alpha CPU

15



[7] James R. Larus and Eric Schnarr. EEL: machine-independent executabig.etitACM '95 Conference on
Programming Language Design and Implementatidew York, NY, USA, June 1995.

[8] Thomas J. Marlowe, Barbara Ryder, and Michael Burke. Defining flow $etsifor data flow problems.
Technical Report LCSR-TR-249, Rutgers University, July 1995.

[9] Steven S. MuchnickAdvanced Compiler Design and Implementatibtorgan Kaufmann Publishers, 1997.

[10] Robert Muth, Saumya Debray, Scott Watterson, and Koen De Bosschéce. AAink-time optimizer for the
dec alpha. Technical Report ,http://www.cs.arizona.edu/people/debragfadipeps, Department of Computer
Science,The University of Arizona, September 1998.

[11] Eugene W. Myers. A precise interprocedural data flow algorithmA@M '81 Symposium on Principles of
Programming Languagepages 219-230, January 1981.

[12] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hanlg [Brian Bershad, and J. Bradley
Chen. Instrumentation and optimization of Win32/Intel executablexustich. InThe USENIX Windows NT
Workshop 199,/Seattle, WA, USA, August 1997.

[13] Amitabh Srivastava and Alan Eustace. ATOM: A system for buildingtomized program analysis tools. In
ACM '94 Conference on Programming Language Design and Impleniemtagges 196-205, June 1994.

[14] Amitabh Srivastava and David W. Wall. A practical system for intedule code optimization at link-time.
Journal of Programming Languagel(1):1-18, December 1992.

[15] MIPS Computer Systems. Riscompiler and ¢ programmer’s guid9.19

[16] David W. Wall. Systems for late code modification. Technical Rep2f8.9Digital Equipment Corporation,
Western Research Lab, May 1992.

16



