
Register Liveness Analysis of Executable Code�

Robert Muth
Department of Computer Science

University of Arizona
Tucson, AZ 85721, U.S.A.

Phone: 520-621-2858
Fax: 520-621-4246

Email: muth@cs.arizona.edu

� This work was supported in part by the National Science Foundation under grant CCR-9711166

1

Abstract

Liveness analysis of variables is a well-understood technique employed by most compilers to guide optimizations
such as useless code elimination and register allocation. Liveness analysis can also be performed on object code if
we let registers take the place of variables. The increasinginterest in systems that modify object code or executables
has generated a need for a fast and accurate register liveness analysis. This paper shows how to accurately compute
register liveness information in a time and space efficient manner and how to cope with irregular control flow not
encountered in high level languages. Tradeoffs between theprecision of the analysis and its computation time and
space are discussed. In particular, context sensitive and context insensitive register liveness analysis are compared.
Experimental results on precision, time and space usage areprovided as well as the impact of liveness analysis on
optimizations.

KEY WORDS: register liveness analysis; data flow analysis;

2

1 Introduction

Liveness analysis of variables is a well-understood technique employed bymost compilers to guide optimizations such
as useless code elimination and register allocation [9]. Liveness analysis canalso be performed on object code if we
let registers take the place of variables. The increasing interest in systems that modify object code or executables has
generated a need for a fast and accurate register liveness analysis. On the one hand we have optimizing systems such
as Alto [10], EEL [7], Etch [12], OM [14], Spike [1] which make use of the liveness information in a more classical
way, ie. to reduce number of (executed) instructions. Instrumentation systems such as Atom [13], Pixie [15] and qp(t)
[5] on the other hand, add new instructions to the executable in order to collect information about the executable at run
time. Scratch registers needed by those new instructions are obtained by temporarily spilling registers to memory or
by changing the compiler to not use certain registers in executables. The first approach slows down the instrumented
executable significantly. In fact, the cost of spilling frequently exceedsthe instrumentation cost itself [6]. The second
approach yields suboptimal uninstrumented executables. As we will see, register liveness analysis can, in mnay case,
provide the necessary registers at no cost.

Compared to traditional interprocedural variable liveness analysis, interprocedural register liveness analysis in exe-
cutable code is both easier and harder. It is easier because there is no aliasing between registers and the number of
registers for any given processor is bounded by a constant. It is harder because the total size of the control flow graphs
is huge, given that the entire program (including libraries) is available at once. One has to be very careful to keep
space and time requirements of the analysis reasonable.

This paper shows how to ompute register liveness information in a time and space efficient manner and how to cope
with irregular control flow not encountered in high level languages. Tradeoffs between the precision of the analysis and
its computation time and space are discussed. In particular, context sensitive and context insensitive register liveness
analyses are compared. Experimental results on precision, time and space usageare provided as well as the impact of
liveness analysis on optimizations. For the integer subset of the SPEC95 benchmark suite, we find that optimizations
using the most accurate liveness analysis may reduce execution time by an additional 7% over the same optimizations
using the trivial liveness analysis which assumes that all registers are live at the end of a node (basic block), even for
programs compiled with a high degree of compiler optimization.

Related Work: Work most closely related to our own has been done by Srivastava and Wall onthe OM optimizer
[14] and by Goodwin on the Spike optimizer [2]. We improve on theirliveness analysis in three ways. Firstly, we
have changed the underlying flow equations resulting in three sets of almost identical equations, which simplifies
implementation and reasoning about correctness. Secondly, we accelerate the fixpoint iteration by exploiting a novel
insight about the interdependence of the various pieces of data flow information. This idea is also applicable to liveness
analysis of variables. Thirdly, we show how to reduce the space requirement of the analysis by recomputation and
exploitation of the new data flow equations.

We also show how to adapt liveness analysis to an environment where (assembly) code maybe handwritten and hence
may not satisfy the “clean” control flow behavior of compiler generated code. Our approach, using so called compen-
sation edges, is automatic while earlier proposals [16] special cased all the badly behaved functions in the standard
libraries and hence could not cope with other misbehaved functions.

Furthermore, we explore ways to improve the accuracy of liveness analysis. For a known technique involving callee-
save registers we point out a possible generalization.

Larus and Ball [6] describe a more ad hoc scheme to “scavenge” registers for instrumentation purposes. However,
they fall back to spilling when programs are compiled with higher optimization levels or when code is hand tuned and
therefore does not conform with calling conventions.

2 Basics

2.1 The Interprocedural Control Flow Graph

The basis for any kind of interprocedural data flow analysis is the interprocedural control flow graph (ICFG), or some
equivalent representation of the program. The construction of such a control flow graph for ordinary programming
languages is standard [4, 11]. For executables it is slightly more difficult but similar.

3

An ICFG consists of the (intraprocedural) control flow graphs (CFG) of the functions within the program, together
with additional edges and nodes to account for interprocedural control flow.A call to a function f is modeled as
depicted in Figure 1. The callsite(nc;nr) consists of two nodes the call nodenc and a return nodenr . There is a call
edge fromnc to the init node off , and a return edge from the exit node off to nr . The exit node is the unique successor
node of all nodes that return from the function. Hence execution of a function starts at the init node and ends at the
exit node.

node

exit

Caller Callee

return
node

call

node

init

node

edge

edge

call

return

callsite

Figure 1: Modeling of Function Calls in an ICFG

The set of all nodes of the ICFG is denotedNodesandNodes[f] denotes the subset of nodes belonging to function
f. The set of all functions is denotedFunctions, the set of all edges is denotedEdges. The distinguished function
entry f unis where the execution of the program begins. For a noden, Type[n] denotes its kind, ie.call, return, init ,
exit or other. The set of immediate successor (resp. predecessor) nodes of a noden is denotedSucc[n] (resp.Pred[n]).
For any functionf 2 Functions, InitNode[f] (resp.ExitNode[f]) denotes the init (resp. exit) node off .

For any call nodenc, ReturnNode[nc] denotes the corresponding return node andCallee[nc] denotes the function being
called. Similarly, for any return nodenr , CallNode[nr] denotes the corresponding call node andCallee[nr] denotes the
function that was called.

2.2 Interprocedural Data Flow Analyses

Intraprocedural data flow analyses consider all possible paths in the CFG of a function to give an estimate of what data
flow facts hold at a given node. Conditionals are not interpreted so this approach potentially includes paths that are
never executed in reality and the estimate will be somewhat conservative.

For interprocedural data flow analyses we can simply adopt the intraprocedural approach and regard the interprocedural
CFG as one big ordinary CFG, treating call and return edges as regular edges. Analyses performed in this fashion
are called context insensitive interprocedural analyses. Such analyses are simple but often yield rather conservative
estimates since many paths in the ICFG do not reflect real program executions.An example is shown in Figure 2
where two callsites call the same functionf . Consider the pathC1! IN ! EX!R2. This path returns to the wrong
callsite and hence does not occur in any execution. But since variables2 is used inR2 and not defined along the path
we conclude thats2 is live atC1, while in facts2 is dead, as it is defined inR1.

Paths which do not return to the wrong callsite are called realizable paths, eg. C1! IN ! EX! R1 orC2! IN !

EX!R2. See [4] for a more rigorous definition.

4

Call Site 1 Call Site 2

v0 = 1

return

s1 = 0

call f() call f()

t2 = s2 + v0

Function f
s2 = 0

C1

R1 R2

C2

t1 = s1 + v0

s2 = 0

EX

IN

Figure 2: Imprecision

A context sensitive interprocedural data flow analysis considers only realizable paths in the ICFG [8].

3 Interprocedural Liveness Analysis

3.1 Context Insensitive Analysis

As described in the previous section, the context insensitive liveness analysis uses the standard intraprocedural analysis
[9] and applies it to a program’s ICFG treating call and return edges as ordinary edges.

The analysis iteratively computes the fixpoint of the equations below

LiveIn[n] = use[n][(LiveOut[n]�de f[n]) n2 Nodes
LiveOut[n] =

S

s2 Succ[n] : LiveIn[s] n2 Nodes

subject to the initial values

LiveOut[n] := /0 n2 Nodes
LiveIn[n] := /0 n2 Nodes

R denotes the set of all registers. For each noden, de f[n] contains the registers which are defined inn, use[n] contains
the registers which are used before they are defined inn.

3.2 Context Sensitive Analysis

For the context sensitive liveness analysis we must restrict ourselvesto realizable paths through the ICFG. This is
achieved by considering intraprocedural paths only and modeling functioncalls using summary information for the
called function [8]. Conceptually, all call and return edges are removed from the ICFG and an edge between a call
nodenc and its corresponding return nodenr is introduced. Data flow through that edge is subject to modifications
described by the summary information for the called function.

Two pieces of information are necessary to summarize the effects of each functionf on liveness:

� MayUse[f]. The set of registers that may be used byf . A registerr may be used byf if there is a realizable
path fromInitNode[f] to a use ofr without an intervening definition ofr. MayUse[f] hence describes the set
of registers which are always live atInitNode[f] independent of the calling context and hence will be live atnc.
Typically these are the registers which are used to pass arguments to function f .

� ByPass[f]. The set of registers which if live atnr will be live atnc. Typically these are the register which are not
used at all byf .

5

We also define

� MustDe f[f]. The set of registers which must be defined (written to) on all paths from InitNode[f] to
ExitNode[f].

� MustDead[f]. The the set of registers which must be defined on all paths fromInitNode[f] to ExitNode[f] and
are not used before they are defined. Clearly,MustDead[f] = MustDe f[f]�MayUse[f]

The description ofByPass[f] above does not define it uniquely. If a register is always live at the callsites calling
f then we can include it inByPass[f] even if the register is never live at any of the corresponding return nodes.
Consequently, we have a certain freedom of choice forByPass[f]. Srivastava et al. [14] chooseByPass[f] to be
MustDead[f]. The problem with this approach that it introduces a mutual dependency betweenByPassinformation
andMayUseinformation which complicates the flow equations. Goodwin [2] choosesByPass[f] to beMustDe f[f]
which does not have this problem and is therefore preferable. In fact, any setwhich lies betweenMustDe f[f] and
MustDe f[f][MayUse[f] is a valid candidate forByPass[f]. Our choice forByPass[f] is a superset of Goodwin’s1

and will result in more uniform data flow equations.

Our analysis proceeds in three phases. The first two phases compute the summary information for functions, which is
used by the third phase to perform the actual liveness computation.

Phase 1 : Computation of byPass[f] : iteratively compute the fixpoint of the data flow equations listed below

ByPassIn[n] = use[n][(ByPassOut[n]�de f[n]) n2 Nodes
ByPassOut[n] =

S

s2 Succ[n] : ByPassIn[s] n2 Nodes^ Type[n] 62 fcall;exitg
= (ByPass[Callee[n]]\ByPassIn[n0

]) n2 Nodes^ Type[n] = call ^
n0

= ReturnNode[n]
ByPass[f] = ByPassIn[InitNode[f]] f 2 Functions

Subject to the initial values

ByPassOut[n] := /0 n2 Nodeŝ Type[n] 6= exit
:= R n2 Nodeŝ Type[n] = exit

ByPassIn[n] := /0 n2 Nodes
ByPass[f] := /0 f 2 Functions

Note that contrary to the intraprocedural liveness analysis or the context insensitive analysis the choice of the
starting values is crucial, eg. initializingbyPassOut[f] of non exit nodes toR as in [2] yields overly conservative
results [3].

Phase 2 : Computation of mayUse[f] : iteratively compute the fixpoint of the data flow equations listed below

MayUseIn[n] = use[n][(MayUseOut[n]�de f[n]) n2 Nodes
MayUseOut[n] =

S

s2 Succ[n] : MayUseIn[s] n2 Nodes^ Type[n] 62 fcall;exitg
= MayUse[f][(ByPass[f]\MayUseIn[n0

]) n2 Nodes^ Type[n] = call ^
n0

= ReturnNode[n] ^ f =Callee[n]
MayUse[f] = MayUseIn[InitNode[f]] f 2 Functions

subject to the initial values

MayUseOut[n] := /0 n2 Nodes
MayUseIn[n] := /0 n2 Nodes
MayUse[f] := /0 f 2 Functions
ByPass[f] := as computed in Phase 1 f 2 Functions

Phase 3 : Computation of liveness information: iteratively compute the fixpoint of the data flow equations listed
below

LiveIn[n] = use[n][(LiveOut[n]�de f[n]) n2 Nodes
LiveOut[n] =

S

s2 Succ[n] : LiveIn[s] n2 Nodes^ Type[n] 62 fcallgq
= MayUse[f][(ByPass[f]\LiveIn[n0

]) n2 Nodes^ Type[n] = call ^
n0

= ReturnNode[n] ^ f =Callee[n]

1it is difficult to give more intuitive description for this choice other than the fixpoint equations

6

Unified Dataflow Equations:
DataIn[n] = use[n][(DataOut[n]�de f[n]) n2Nodes
DataOut[n] =

S

s2 Succ[n] : DataIn[s] n2Nodes^ Type[n] 62 NoPropTypes
= MayUse[f][(ByPass[f]\DataIn[ReturnNode[n]]) n2Nodes^ Type[n] = call

Summary[f] = DataIn[InitNode[f]] f 2 Functions
Unified Initial Values:

DataOut[n] := /0 n2 Nodeŝ Type[n] 6= exit
:= ExitDataOutInit n2 Nodeŝ Type[n] = exit

DataIn[n] := /0 n2 Nodes
Summary[f] := /0 f 2 Functions

Phase Adaptations:
DataIn DataOut NoPropTypes Summary ExitDataOutInit

Phase 1 ByPassIn ByPassOut fcall;exitg ByPass R

Phase 2 MayUseIn MayUseOut fcall;exitg MayUse /0
Phase 3 LiveIn LiveOut fcallg — /0

Figure 3: Unified Fixpoint Computation

subject to the initial values

LiveOut[n] := /0 n2 Nodes
LiveIn[n] := /0 n2 Nodes
MayUse[f] := as computed in Phase 2 f 2 Functions
byPass[f] := as computed in Phase 1 f 2 Functions

Note that phase 3 propagates liveness information into the exit nodes while phases 1and 2 do not.

Differing from Goodwin’s approach we have modified the equation forByPassIn[n] by adding (unioning)use[n] to
the right hand side. This makes ourByPasssets strictly bigger than his but sinceuse[n] � MayUseIn[n] holds,
ByPassIn[InitNode[f]] will still lie betweenMustDe f[f] andMustDe f[f][MayUse[f]. The major virtue of this
change is that it makes the equations of the three phases sufficiently similar that they can be unified into just one
simple and compact set of equations (c.f. Figure 3). The code implementing the analysis, which uses the unified
equations by means of a subroutine call is also correspondingly simplerand smaller. The bigger sets do not affect the
performance if they are realized as bit vectors.

3.3 Tuning the Context Sensitive Analysis

The three phases above can be run in parallel. However, if executed sequentially the space used to holdByPassOut[n]
andByPassIn[n] in Phase 1 can be used to holdMayUseOut[n] andMayUseIn[n] in Phase 2 which in turn can be
reused in Phase 3 to holdLiveIn[n] andLiveOut[n]. When comparing Phase 2 with Phase 3 it becomes evident that
the fixpoint forLiveOut[n] resp.LiveIn[n] must be a superset of the fixpoint forMayUseOut[n] resp.MayUseIn[n].
Hence, it is safe to initializeLiveIn[n] := MayUseIn[n] andLiveOut[n] := MayUseOut[n] thereby accelerating Phase
3 by not having to start the fixpoint iteration from scratch.
Next we describe how to improve Phase 3 more drastically exploitingthe following observation. We focus on Out-sets
here, In-sets are analogous. For a registerr at noden of function f , we have

r 2 LiveOut[n]) r 2MayUseOut[n] _ r 2 ByPassOut[n]

Conversely,
r 2MayUseOut[n]) r 2 LiveOut[n]

But r 2 ByPassOut[n] 6) r 2 LiveOut[n]. The later does not hold because our initial values forByPassOutof the exit
nodes were pessimistic; we essentially assumed that all registers could belive. During Phase 3 it might turn out that
not all registers are live at some exit nodes. The correct condition is therefore

r 2 ByPassOut[n] ^ r 2 LiveOut[ExitNode[f]]) r 2 LiveOut[n] (1)

7

This suggests the following alternative approach for Phase 3 which has the virtue that it only iterates over the call
graph rather than the much bigger supergraph.

(1) FOREACH n2Nodes DO
(2) LiveOut[n]:= MayUseOut[n]
(3) LiveIn[n] := MayUseIn[n]
(4) REPEAT
(5) changed := false
(6) FOREACH f2Functions DO
(7) new_out :=

S

s2Succ[ExitNode[f]] : LiveIn[s]
(8) IF new_out 6= LiveOut[ExitNode[f]] THEN
(9) changed := true
(10) liveOut[exit[f]] := new_out
(11) FOREACH n2Nodes[f] DO
(12) LiveOut[n]:= MayUseOut[n][(ByPassOut[n] \ new_out)
(13) LiveIn[n] := MayUseIn[n] [(ByPassIn[n] \ new_out)
(14) UNTIL :changed

We begin by setting the start values for the fixpoint iterations using the improvement mentioned above (Lines 1 through
3). Then, we recompute the liveness information at the exit nodes for all functions until there is no change (Lines 4-
14). If the liveness information at an exit node has changed we propagate this change according to (1) to all nodes of
this function (Lines 11 through 13). Note, that it would suffice to propagate this information to return nodes only.

LiveOut andMayUseOut(resp. LiveIn andMayUseIn) need not be kept in separate locations; they can be merged
into one, ie. all occurrences ofLiveOut (resp.LiveIn) can be replaced byMayUseOut(resp.MayUseIn) which will
then contain the liveness information upon completion of the fixpointiteration. This also renders the first three lines
of the algorithm unnecessary.

Since the last phase is usually the costliest of the three, this improvement cuts down execution time by 25%. (See the
following section for experimental results). The drawback is that spaceusage almost doubles because both ByPass and
MayUse information have to be kept around for each node (assumingLive information has been merged withMayUse
information).

The enhancement is also applicable to ordinary interprocedural liveness analyses of variables.

3.4 Implementation and Performance of the Liveness Analyses

We have implemented the context sensitive and context insensitive liveness analysis algorithms as part of Alto [10],
an optimizer for DEC UNIX/Alpha executables. Besides the speed of the analysis, space consumption was of primary
concern to us. We found that it is usually better to recompute a data item than to store it. Thus, Alto only stores
the variousOut-sets associated with a node. TheIn-sets are computed by traversing the instructions of a basic block
backwards.2 de f andusesets are not needed at all.

The relatively small number of instructions in a typical node make thisapproach viable. We also do not maintain
a worklist of those nodes that need to be reconsidered during the fixed point iteration because this would incur the
cost of another pointer per node. Instead, we mark those nodes which need recomputation and iterate over all nodes,
processing marked nodes until no marked ones are left.

The total space requirement for the context insensitive liveness analysis is 64 bits per node to hold theLiveOut in-
formation. (1 bit for each of the 64 registers of the Alpha CPU). Forthe context sensitive analysis running the three
phases sequentially we need an additional 128 bits per function to hold theByPassandMayUsesummary information
simultaneously. For the improved version of the context sensitiveanalysis described in the previous section we need
an additional 64 bits per node because we need to accessMayUseOutandByPassOutsimultaneously.

2Alternatively, we could keep theIN-sets and recompute theOUT-sets from the successor nodes. However, when an optimization needs to
determine which registers are live at a point within a node, it is more convenient to have theOUT-sets readily available.

8

Our experiments are based on the integer subset of the SPEC95 benchmark suite. Figure 4 summarizes their basic
characteristics. The benchmark programs were statically compiled, hence the numbers include library functions.

Benchmark Instructions CFG Edges Nodes Functions
compress 18759 9222 5017 241
gcc 295096 158721 77501 2127
go 71721 29452 15692 602
ijpeg 54611 21530 11530 636
li 34768 17723 9134 643
m88ksim 46117 21938 11469 525
perl 90318 44995 22658 615
vortex 127383 58105 28461 1023

Figure 4: Characteristics of SPEC95 integer executables

Figure 5 shows our experimental results for the liveness analyses. Besides time and space usage we also measured the
precision. For the improved context sensitive analysis, the space and time requirements are given in parentheses (the
precision is not affected). The precision is computed as the average number of dead registers at the end of all nodes,
ie. the average size of theLiveOutsets restricted to integer registers.

The last column contains the difference in precision between the context sensitive and insensitive analysis.

The measurements were obtained on a DEC Alpha workstation, with a 300MHz Alpha 21164 processor and
512MBytes of main memory, running DEC UNIX 4.0. The benchmarks were compile with the DEC C compiler
V5.2-036 invoked ascc -O4 -non shared. This instructs the C compiler to use the highest optimization level,
with additional flags to make the linker retain relocation information, and results in statically linked executables.

Benchmark Context Insensitive Context Sensitive (improved) ∆
Space Time Prec. Space Time Prec. Prec.

compress 40kB 0.05s 2.9 44kB(84kB) 0.15s (0.10s) 4.1 1.2
gcc 620kB 1.30s 2.9 654kB(1274kB) 3.75s (3.00s) 5.5 2.6
go 126kB 0.20s 4.3 136kB(262kB) 0.55s (0.40s) 8.8 4.5
ijpeg 92kB 0.15s 2.9 102kB(194kB) 0.40s (0.30s) 3.8 0.9
li 73kB 0.10s 2.4 83kB(156kB) 0.30s (0.20s) 4.0 1.6
m88ksim 88kB 0.15s 3.0 96kB(184kB) 0.35s (0.250) 5.0 2.0
perl 181kB 0.30s 2.9 191kB(372kB) 0.85s (0.65s) 4.6 1.7
vortex 228kB 0.45s 2.9 244kB(472kB) 1.30s (1.00s) 5.5 2.6

Figure 5: Performance Liveness Analysis

The context sensitive analysis finds between 0.9 to 4.5 more dead register per node than the insensitive analysis
and takes roughly three times as long to compute. Our improvement to the context sensitive analysis speeds the
computation up by approximately 25% at the cost of a roughly twice the memory usage.

It is surprising that on the average at least 4 registers seem to be dead at the end of each node. Those dead registers
could be used as scratch registers by an instrumentation tool such as pixieinstead of spilling registers to memory
thereby reducing profiling overhead.

4 Control Flow Irregularities

In this section we examine possible anomalies in the interprocedural control flow graph of executables. These anoma-
lies are not encountered in flow graphs derived from high level languages. But ignoring them will result in an incorrect
analysis.

9

4.1 Unknown Control Flow

Unknown control flow is rather common in executable code since much of theinformation present in the source code
of the executable has been lost during compilation and linking. The three major sources for unknown control flow are

� switch or case statements compiled into computed jumps
The compiler generates stylized instruction sequences for switch statements and hence by careful analysis the
location and the size of the jump table can be recovered. If, due to optimizations or hand tuning, the stylized
instruction sequence becomes obfuscated, we are unable to determine the possible successors of the jump node
and and consequently are not able to determine how other nodes can be reached.

� exception handling
This issue is, of course, very implementation specific but often quite similar to switch/case statements. When an
exception is raised control is usually transferred via a computed jump toa handler (which might be in a different
function). The possible targets of the jump are unknown and for a given handler the possible predecessor nodes
are unknown.

� invocation through function pointers
This can be either explicit or implicit (virtual functions), so that for some callsites we are unable to identify the
function being called. Conversely, we are sometimes unable to identify allthe callsites calling a given function.

The following standard technique [14] is used to cope with unknown control flow. It is safe but very crude. A special
nodehellnode2Nodesand a special functionhell f un2Functionsare added to the ICFG. If not all possible successor
nodes of a noden can be determined, an extra edge fromn to hellnodeis added. (Ifn is a call node then a call to
hell f un is added instead.) If not all possible predecessor nodes of a noden can be determined, an edge fromhellnode
to n is added. (Ifn is an init node then a call fromhell f un is added to the function containingn instead; in particular
hell f uncallsentry f un, the distinguished function where program execution begins.)

For the data flow analysishellnodeandhell f unwill be associated with the worst case assumptions:

ByPassOut[hellnode] := R LiveOut[hellnode] := R

ByPassIn[hellnode] := R LiveIn[hellnode] := R

MayUseOut[hellnode] := R MayUse[hell f un] := R

MayUseIn[hellnode] := R ByPass[hell f un] := R

For the context insensitive analysis we will identifyhellnodewith hell f un.

4.2 Escaping Branches

Escaping branches are branches from the middle of a function into the middle of another. Traditional ICFGs [11, 4] do
not consider edges corresponding to those branches. The only allowable interprocedural edges are call and and return
edges. Escaping edges occur frequently in hand tuned assembly code, the UNIX system library of DEC UNIX is a
good example. If an error occurs during a system call (eg. open, close, read, etc.) -1 is returned and the global variable
errno is set to an special error code describing the error. The library designers have factored out the code that sets
theerrno variable into a functiondoerror. Figure 6 depicts the situation for the system functionclose.

10

call edge

escaping edge

return edge

init

Function

E exit

I

exit

Function

close

save r0,errno

C

doerror

return

move #-1,r0

Dmove #error-code,r0B

jump D

move #0,r0

return

A

Figure 6: Escaping Edges

Since no function directly callsdoerror, a naive analysis might find that register r0 is not live at the end of node
D.The move instruction inD could then be deleted resulting in an incorrect program. Note, that this problem also
needs to be addressed in a context insensitive analysis.

A simple fix would be to treat all functions with escaping edges as if we can not say anything about them, ie. similar
to hell f un. We found this to be too limited because of the extra imprecision introduced by this approach. Our solution
to the “escaping edge problem” is to introduce compensation edges into theICFG. If there is an escaping branch from
function f to g then a compensation edge fromExitNode[g] to ExitNode[f] is added. Interprocedural liveness analysis
now works as usual because liveness information reachingExitNode[open] also propagates through the compensation
edge toExitNode[doerror] and does not cause r0 to be dead. The situation is depicted in Figure 7.

node

exit

init

node

init

node

node

exit

escaping

edge

edge

compensation

Caller Callee

Figure 7: Compensation Edges

4.3 setjmp and longjmp

The standard C library contains two functions,setjmp andlongjmp, which exhibit a rather irregular control flow
behavior. Despite their frequent use, eg. in the three SPEC95 benchmarks gcc,li, and perl, they are neglected in the
literature .

setjmp saves program state, such as registers and the program counter, into a memory area passed to it as an argu-
ment. Iflongjmp is called with the same memory area it will restore that program state. Hence, the return node
of a callsite ofsetjmp can potentially be reached from many nodes while the return node of a callsite oflongjmp
will probably not be reached at all. Treatingsetjmp andlongjmp as regular functions does not model the control

11

flow correctly. The following scenario demonstrates this. Suppose a (global) variable is defined just before a call to
longjmp. This definition might appear to be dead in a naive analysis because this variable might not be used (live)
at the corresponding return node.

Using compensation edges, the problems can be solved quite simply, keeping the modifications to the ICFG at a bare
minimum and introducing only a moderate amount of imprecision. For the functionsetjmp we add a compensa-
tion edge fromhellnodeto theExitNode[set jmp]. For the functionlongjmp we add a compensation edge from
ExitNode[long jmp] to hellnode. The situation is depicted in Figure 8.

init

node

node

exit

node

exit

init

node

hellnode

setjmp longjmp
Function Function

Figure 8:Setjmp andlongjmp

5 Improving the Precision of Context Sensitive Register Liveness Analysis

This section explores on how the precision of liveness analysis can be improved. An obvious source for improvement
is our overly pessimistic treatment ofhellnodeandhell f un. This will be exploited in 5.2. Section 5.1 shows how
some registers which the analysis correctly identified as live can nevertheless be regarded as dead in some contexts.

5.1 Callee Save Registers

As described by Goodwin in [2], information about callee save registers can be exploited to reduce the number of
live registers. LetSaved[f] denoted the registers which are saved and restored byf and which are otherwise not used
before defined inf . Saved[f] will be a subset ofMayUse[f] because the saving of a register at function entry will be
regarded as a use of that register by the liveness analysis. However, this use is only relevant if is the register is live at
the return node of a given callsite.

Hence we can removeSaved[f] from MayUse[f] and instead add it toByPass[f] without affectingsafety. The fol-
lowing slight modification of the equations updating the summary information in Phase 1 and 2 achieves the desired
effect.

ByPass[f] = ByPassIn[InitNode[f]][Saved[f] f 2 Functions
MayUse[f] = MayUseIn[InitNode[f]]�Saved[f] f 2 Functions

In order to get a better insight how this optimization opportunity arises and how it may be generalized we consider the
following (hypothetical) code for complex addition and two of its callsites.

Callsite1:
...

ComplexAdd: load r10,memloc1 Callsite2:
add r10,r12,r0 load r11,memloc2 ...
add r11,r13,r1 load r12,memloc3 bsr ComplexAdd

12

ret load r13,memloc4 mul r0,r0,r0
bsr ComplexAdd mul r1,r1,r1
move r0,r10 add r0,r1,r0
bsr PrintNumber ...
...

For ComplexAdd the real and imaginary part of the first summand is passed in registers r10and r11, the real and
imaginary part of the second summand in registers r12 and r13, and the result is returned in r0 and r1.Callsite1
just prints out the real part of the result, whileCallsite2 computes its squared norm.

Clearly, registers r10 through r13 will be live at both callsites just before the call toComplexAdd. ButCallsite1
only uses the real part of the result hence the result computed by the secondadd inComplexAdd is useless. A lazy
programming language would neither execute this add instruction nor the instructions computing the values of registers
r11 and r13. Unfortunately, we cannot eliminate the add instruction sinceCallsite2 uses both results r0 and r1. Be
we can consider registers r11 and r13 to be dead atCallsite1 and subsequently eliminate the corresponding load
instructions. Registers r11 and r13 will then have arbitrary values and the add instruction produces an arbitrary result
which is ignored3

In this light the callee save registers can be regarded as an additional argumentas and resultrs of the functionf . (s,
as, andrs will of course denote the same register.)as will be moved to a new location and then from there tors. If rs

is not live at a given returnnode the move operations are useless. But asabove we cannot delete them. All we can do
is markas as dead at the corresponding callnode and this is exactly what is achieved by moving s from MayUse[f] to
ByPass[f].

5.2 Calling Conventions

Suppose functionf does not use or define registerr and does not call any other function. Our liveness analysis will
determine thatr 2 ByPass[f]. Now assume thatf and any function callingf obey some sort of calling convention
which state that registerr is not preserved across procedure calls and does not carry a result. This implies thatr will
not be live at any return node of a callsite off and it is therefore safe to remover from anyByPass[f]. In fact, it
is irrelevant whetherr is in ByPass[f] or not. The smallerByPassset is nevertheless desirable, becausehell f un or
hellnodemay introduce unwanted liveness information into the analysis which would be partially eliminated by the
smaller set. Unfortunately, we have no control over the enforcement of calling conventions in general, except for
system calls. In fact, compilers often violate calling convention when theyperform interprocedural register allocation
or when library functions are invoked that implement missing hardware features such as a divide instruction. It seems
reasonable, however, to assume that calls to shared libraries and calls through function pointers respect the calling
convention.

In our current version of the liveness analysis those calls are modeled by acall tohell f un. An enhancement would be
to model this as a call to a different functionsys f un(or a special nodesysnodefor a context insensitive analysis).4

Let sysusedenote the set of registers potentially used according to the calling conventions andsyssavethe set of
registers preserved across function calls. The liveness analysis will be augmented with the following assignments.

ByPassOut[sysnode] := syssave LiveOut[sysnode] := sysuse[syssave
ByPassIn[sysnode] := syssave LiveIn[sysnode] := sysuse[syssave
MayUseOut[sysnode] := sysuse MayUse[sys f un] := sysuse
MayUseIn[sysnode] := sysuse ByPass[sys f un] := syssave

3If add can cause a side effect such as an overflow this approachis of course not valid.
4If the calling conventions for system calls differ from those for regular functions, as it is the case for DEC UNIX for the Alpha, we introduce

one function/node for each set of calling conventions

13

5.3 Performance

We have added the enhancements described in the previous sections to the context sensitive analysis and measured
the resulting gain in precision. Figure 9 shows the average number ofdead registers at the end of a node without any
enhancement, with one of the enhancements, and with both enhancements.

Our experiments show that incorporating both enhancements increases the number of dead registers by between 1.8
and 4.3. The enhancements seem to be synergetic since the total improvement is bigger than the sum of the individual
improvements.

Benchmark None Save Call. Conv. Both Both - None
compress 4.1 4.2 6.8 7.6 3.5
gcc 5.5 6.0 7.4 8.5 3.0
go 8.8 9.0 10.2 10.6 1.8
ijpeg 3.8 3.9 7.6 8.1 4.3
li 4.0 4.2 6.1 6.6 2.6
m88ksim 5.0 5.3 7.1 8.0 3.0
perl 4.6 4.9 7.1 8.0 3.4
vortex 5.5 6.2 7.2 8.7 2.2

Figure 9: Impact of Enhancements to Liveness Analysis

6 Applying Register Liveness Information

Ultimately, the utility of an analysis should be measured by the extentto which it enables optimizations to be carried
out. In particular, an analysis that attains improved precision at the cost of increased complexity should be justified by
the additional code optimizations that become possible as a result of the improvement in precision.

There are a variety of optimizations that will benefit from register liveness information: (partially) dead code elimi-
nation, common subexpression elimination, loop invariant optimizations, moving stackvariables into registers, etc. In
this section, we will focus on reload avoidance. In the next section, we evaluate the extent to which this and other
optimizations are affected by the different versions of liveness analysis.

Reload avoidance attempts to reduced the number of load instructions in a program. If a value has been loaded from or
stored to a memory location, then a subsequent load from the same locationcan be avoided if there are no intervening
store instructions overwriting the location. Often, the reloaded value is still available in some register and the load
instruction can be replaced by a move instruction (from that register).If the reloaded value is not available, liveness
analysis might allow us to find a free scratch register that can carry it. Copypropagation can then be applied to
eliminate those move instructions. But even if the move instructions cannot be eliminated there is a benefit, since
move instructions typically have smaller latencies and fewer scheduling restrictions than load instructions. Our reload
avoidance is performed on extended basic blocks.

6.1 Experimental Results

In order to measure the effectiveness of the liveness analysis, we optimizedthe integer subset of the SPEC95 bench-
mark suite with the Alto system. The benchmarks were compiled as describedin Section 3.4. Profiling information
was obtained using pixie and the training data sets provided by SPEC. (The profiling information is used by some of
optimizations performed by Alto.) Actual measurements were done with the reference data sets.

Figure 10 shows the execution time of the optimized executables as reported by the UNIX time command (user time)
while the system was very lightly loaded. This reflects the overall effectiveness of the optimizations performed by
Alto. With the enhanced context sensitive liveness analysis, Alto is able to reduce the execution time by up to 7%

14

Benchmark trivial context insensitive enhanced context sensitive
compress 261.2 (100.0%) 260.2 (99.6%) 261.2 (100.0%)
gcc 236.6 (100.0%) 231.1 (97.7%) 221.6 (93.7%)
go 344.5 (100.0%) 344.5 (100.0%) 336.7 (97.7%)
ijpeg 329.2 (100.0%) 325.5 (98.9%) 324.6 (98.6%)
li 254.1 (100.0%) 250.5 (98.6%) 245.9 (96.8%)
m88ksim 215.2 (100.0%) 219.1 (101.8%) 213.5 (99.2%)
perl 205.1 (100.0%) 200.6 (97.8%) 190.0 (92.6%)
vortex 346.6 (100.0%) 322.8 (93.1%) 321.5 (92.8%)

Figure 10: Running time in seconds after optimization with differentliveness analyses

Benchmark trivial context insensitive enhanced context sensitive
compress 12037M (100.0%) 11750M (97.6%) 11748M (97.6%)
gcc 11493M (100.0%) 11054M (96.2%) 10756M (93.6%)
go 19370M (100.0%) 18483M (95.4%) 17754M (91.7%)
ijpeg 20115M (100.0%) 19829M (98.5%) 19820M (98.5%)
li 17382M (100.0%) 16700M (96.0%) 16323M (93.9%)
m88ksim 15133M (100.0%) 14057M (92.9%) 13790M (91.1%)
perl 12311M (100.0%) 11684M (94.9%) 11241M (91.3%)
vortex 24183M (100.0%) 22916M (94.8%) 22408M (92.7%)

Figure 11: Dynamic loads after optimization with different liveness analyses

(vortex,perl) over the trivial liveness analysis which assumes that all registers are live at the end of a basic block. For
benchmarks like compress and m88ksim, whose execution time is dominated by small loops, the improved liveness
information has little or no benefit. In fact, compress and m88ksim exhibit an anomaly in the execution time for the
context insensitive analysis which is probably due to deficiencies in ourinstruction ischeduler.

Figure 11 shows the (dynamic) number of load instructions executed bythe optimized executables.5 This primarily
reflects the effectiveness of the load avoidance optimization. Compared withtrivial liveness analysis, the enhanced
context sensitive analysis will reduce the number of load instructions by up to 9%.

References

[1] Robert Cohn, David Goodwin, P. Geoffrey Lowney, and Norman Rubin. Spike: An optimizer for Alpha/NT
executables. InThe USENIX Windows NT Workshop, Seattle, Washington,USA, August 1997.

[2] David W. Goodwin. Interprocedural dataflow analysis in an executable optimizer. InACM ’97 Conference on
Programming Language Design and Implementation, pages 122–133, Las Vegas, Nevada, USA, June 1997.

[3] David W. Goodwin. Personal communication, 1997.

[4] William Landi and Barbara Ryder. Pointer-induced aliasing: A problemtaxonomy. InACM ’91 Symposium on
Principles of Programming Languages, pages 93–103, Orlando, FL, USA, January 1991.

[5] James R. Larus. Efficient program tracing.Computer, 26(5):52–61, May 1993.

[6] James R. Larus and Thomas Ball. Rewriting executable files to measure program behavior.Software — Practice
and Experience, 24(2):197–218, February 1994.

5The count where obtained using the hardware performance counter of the Alpha CPU

15

[7] James R. Larus and Eric Schnarr. EEL: machine-independent executable editing. In ACM ’95 Conference on
Programming Language Design and Implementation, New York, NY, USA, June 1995.

[8] Thomas J. Marlowe, Barbara Ryder, and Michael Burke. Defining flow sensitivity for data flow problems.
Technical Report LCSR-TR-249, Rutgers University, July 1995.

[9] Steven S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers, 1997.

[10] Robert Muth, Saumya Debray, Scott Watterson, and Koen De Bosschere. Alto: A link-time optimizer for the
dec alpha. Technical Report ,http://www.cs.arizona.edu/people/debray/papers/alto.ps, Department of Computer
Science,The University of Arizona, September 1998.

[11] Eugene W. Myers. A precise interprocedural data flow algorithm. InACM ’81 Symposium on Principles of
Programming Languages, pages 219–230, January 1981.

[12] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brian Bershad, and J. Bradley
Chen. Instrumentation and optimization of Win32/Intel executables using etch. InThe USENIX Windows NT
Workshop 1997, Seattle, WA, USA, August 1997.

[13] Amitabh Srivastava and Alan Eustace. ATOM: A system for buildingcustomized program analysis tools. In
ACM ’94 Conference on Programming Language Design and Implementation, pages 196–205, June 1994.

[14] Amitabh Srivastava and David W. Wall. A practical system for intermodule code optimization at link-time.
Journal of Programming Languages, 1(1):1–18, December 1992.

[15] MIPS Computer Systems. Riscompiler and c programmer’s guide, 1989.

[16] David W. Wall. Systems for late code modification. Technical Report 92/3, Digital Equipment Corporation,
Western Research Lab, May 1992.

16

